Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (11): 2348-2358.doi: 10.16182/j.issn1004731x.joss.21-0261
• Modeling Theory and Methodology • Previous Articles Next Articles
Jiarui Liu(), Guotian Yang(), Xiaowei Wang
Received:
2021-03-29
Revised:
2021-05-11
Online:
2022-11-18
Published:
2022-11-25
Contact:
Guotian Yang
E-mail:ljr@163.com;ygt@ncepu.edu.cn
CLC Number:
Jiarui Liu, Guotian Yang, Xiaowei Wang. A Wind Turbine Fault Diagnosis Method Based on Siamese Deep Neural Network[J]. Journal of System Simulation, 2022, 34(11): 2348-2358.
Table 4
Fault diagnosis results of different deep learning methods
数据集 | 模型 | Precision | Recall | F1score | Accuracy |
---|---|---|---|---|---|
A | LSTM | 0.837±0.030 9 | 0.871±0.025 9 | 0.853±0.038 7 | 0.858±0.035 3 |
1-D CNN | 0.912±0.018 7 | 0.904±0.026 8 | 0.904±0.025 1 | 0.908±0.025 6 | |
1-D CNN-LSTM | 0.922±0.009 2 | 0.925±0.012 4 | 0.921±0.016 0 | 0.923±0.010 1 | |
B | LSTM | 0.951±0.014 1 | 0.934±0.019 4 | 0.938±0.016 4 | 0.947±0.023 5 |
1-D CNN | 0.974±0.008 9 | 0.966±0.005 9 | 0.968±0.007 1 | 0.969±0.008 9 | |
1-D CNN-LSTM | 0.979±0.005 5 | 0.971±0.003 7 | 0.974±0.004 1 | 0.986±0.002 7 |
[1] | 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189. |
Chen Xuefeng, Guo Yanjie, Xu Caibin, et al. Review of Fault Diagnosis and Health Monitoring for Wind Power Equipment[J]. China Mechanical Engineering, 2020, 31(2): 175-189. | |
[2] | Wang J, Qiao W, Qu L. Wind Turbine Bearing Fault Diagnosis Based on Sparse Representation of Condition Monitoring Signals[J]. IEEE Transactions on Industry Applications (S0093-9994), 2019, 55(2): 1844-1852. |
[3] | Liu Z, Wang X, Zhang L. Fault Diagnosis of Industrial Wind Turbine Blade Bearing Using Acoustic Emission Analysis[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2020, 69(9): 6630-6639. |
[4] | 邓子豪, 李录平, 杨波, 等. 基于SCADA数据特征提取的风电机组偏航齿轮箱故障诊断方法研究[J]. 动力工程学报, 2021, 41(1): 43-50. |
Deng Zihao, Li Luping, Yang bo, et al. Research on Fault Diagnosis Method of Wind Turbine Yaw Gearbox Based on SCADA Data Feature Extraction[J]. Journal of Power Engineering, 2021, 41(1): 43-50. | |
[5] | 余萍, 曹洁. 深度学习在故障诊断与预测中的应用[J]. 计算机工程与应用, 2020, 56(3): 1-18. |
Yu Ping, Cao Jie. Deep Learning Approach and Its Application in Fault Diagnosis and Prognosis[J]. Computer Engineering and Applications, 2020, 56(3): 1-18. | |
[6] | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature (S0028-0836), 2015, 521(7553): 436-444. |
[7] | 吴定会, 祝志超, 韩欣宏. 基于BO-SDAE多源信号的风电机组轴承故障诊断[J]. 系统仿真学报, 2021, 33(5): 1148-1156. |
Wu Dinghui, Zhu Zhichao, Han Xinhong. Wind Turbine Bearing Fault Diagnosis Based on BO-SDAE Multi-source Signals[J]. Journal of System Simulation, 2021, 33(5): 1148-1156. | |
[8] | Ince T, Kiranyaz S, Eren L, et al. Real-Time Motor Fault Detection by 1D Convolutional Neural Networks[J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2016, 63(11): 7067-7075. |
[9] | Jiang G, He H, Yan J, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2018, 66(4): 3196-3207. |
[10] | Lei J, Liu C, Jiang D. Fault Diagnosis of Wind Turbine Based on Long Short-term Memory Networks[J]. Renewable Energy, 2019, 133(4): 422-432. |
[11] | 赵洪山, 闫西慧, 王桂兰, 等. 应用深度自编码网络和XGBoost的风电机组发电机故障诊断[J]. 电力系统自动化, 2019, 43(1): 81-90. |
Zhao Hongshan, Yan Xihui, Wang Guilan, et al. Fault Diagnosis of Wind Turbine Generator Based on Deep Autoencoder Network and XGBoost[J]. Automation of Electric Power Systems, 2019, 43(1): 81-90. | |
[12] | 魏书荣, 张鑫, 符杨, 等. 基于GRA-LSTM-Stacking模型的海上双馈风力发电机早期故障预警与诊断[J]. 中国电机工程学报, 2021, 41(7): 2373-2383. |
Wei Shurong, Zhang Xin, Fu Yang, et al. Early Fault Warning and Diagnosis of Offshore Doubly-fed Wind Turbines Based on GRA-LSTM-Stacking Model[J]. Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(7): 2373-2383. | |
[13] | 罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239. |
Luo Huilan, Chen Hongkun. A Survey of Research on Target Detection Based on Deep Learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239. | |
[14] | Kingma D P, Ba J L. Adam: A Method for Stochastic Optimization[C]//3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings. New York: ACM, 2015: 1-15. |
[15] | Bromley J, Guyon I, Lecun Y, et al. Signature Verification Using a “Siamese” Time Delay Neural Network[C]//Advances in Neural Information Processing Systems 6, 7th NIPS Conference. Cambridge, MA: MIT, 1993: 669. |
[16] | Liu X, Zhou Y, Zhao J, et al. Siamese Convolutional Neural Networks for Remote Sensing Scene Classification[J]. IEEE Geoscience and Remote Sensing Letters (S1545-598X), 2019, 69(9): 6630-6639. |
[17] | Yin H, Wang Y, Ding X, et al. 3D LiDAR-Based Global Localization Using Siamese Neural Network[J]. IEEE Transactions on Intelligent Transportation Systems (S1524-9050), 2019, 21(4): 1380-1392. |
[1] | Yue Xu, Li Jia, Xuanyi Fu. Variable Pitch Control of Wind Power Generation System Based on Wiener Model [J]. Journal of System Simulation, 2022, 34(8): 1741-1749. |
[2] | Huimin Chai, Yong Zhang, Xinyue Li, Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning [J]. Journal of System Simulation, 2022, 34(7): 1459-1467. |
[3] | Xu Kang, Xiaofeng Zhang. Radar Remote Sensing Data Augmentation Method Based on Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(4): 920-927. |
[4] | Rongxiu Lu, Bihao Zhang, Zhenlong Mo. Fatigue Detection Method Based on Facial Features and Head Posture [J]. Journal of System Simulation, 2022, 34(10): 2279-2292. |
[5] | Zhu Zhichao, Wu Dinghui, Yue Yuanchang. Engine Wear Fault Diagnosis Based on Supervised Kernel Entropy Component Analysis [J]. Journal of System Simulation, 2022, 34(1): 45-52. |
[6] | Weiguo Tong, Shichao Zeng, Lifeng Zhang, Zhe Hou, Jiayue Guo. Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network [J]. Journal of System Simulation, 2022, 34(09): 2028-2036. |
[7] | Li Yuan, Geng Zewei. Fault Diagnosis of Industrial Process Based on LLE and K-means Clustering Algorithm [J]. Journal of System Simulation, 2021, 33(9): 2066-2073. |
[8] | Wang Yinsong, Sun Tianshu. Actuator Fault Status Evaluation Based on Two-Class NMF Network [J]. Journal of System Simulation, 2021, 33(8): 1882-1891. |
[9] | Lin Shuo, An Lei, Gao Zhijun, Shan Dan, Shang Wenli. Research on Intrusion Detection Based on Stacked Autoencoder and Long-short Memory [J]. Journal of System Simulation, 2021, 33(6): 1288-1296. |
[10] | Cheng Wencong, Shi Xiaokang, Wang Zhigang. Creating Synthetic Satellite Cloud Data Based on GAN Method [J]. Journal of System Simulation, 2021, 33(6): 1297-1306. |
[11] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[12] | Wei Jingjing, Liu Qinming, Ye Chunming, Li Guanlin. Fault Diagnosis of Mechanical Equipment Based on GA-SVR with Missing Data in Small Samples [J]. Journal of System Simulation, 2021, 33(6): 1342-1349. |
[13] | Wu Dinghui, Zhu Zhichao, Han Xinhong. Fault Detection of Wind Turbine Bearing Based on BO-SDAE Multi-source Signal [J]. Journal of System Simulation, 2021, 33(5): 1148-1156. |
[14] | Zhang Kunping, Hao Lin. Frequency Coordinated Control Strategy of Microgrid Based on Fuzzy Prediction [J]. Journal of System Simulation, 2021, 33(3): 581-590. |
[15] | Dong Shuqin, Zhang Bin. Network Traffic Anomaly Detection Method for Imbalanced Data [J]. Journal of System Simulation, 2021, 33(3): 679-689. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||