[1] 向健平, 姜楠楠, Simon Jonathan Watson.一种风力发电机自动故障诊断及预测方法[J]. 动力工程学报, 2017, 37(10): 821-828. Xiang Jianping, Jiang Nannan, Simon Jonathan Watson.Automatic Fault Diagnosis and Prediction of Wind Turbines[J]. Journal of Chinese Society of Power Engineering, 2017, 37(10): 821-828. [2] 吴定会, 翟艳杰. 基于系统辨识算法的风力机桨距系统故障诊断[J]. 信息与控制, 2016, 45(5): 563-567, 574. Wu Dinghui, Zhai Yanjie.Fault Diagnosis for the Pitch System of Wind Turbines Using the System Identification Algorithm[J]. Information and Control, 2016, 45(5): 563-567, 574. [3] 张磊, 朱凌志, 陈宁, 等. 新能源发电模型统一化研究[J]. 电力系统自动化, 2015, 39(24): 129-138. Zhang Lei, Zhu Lingzhi, Chen Ning, et al.Review on Generic Model for Renewable Energy Generation[J]. Automation of Electric Power Systems, 2015, 39(24): 129-138. [4] 董兴辉, 张光, 程友星, 等. 一种风电机组轴承健康劣化趋势预测方法[J]. 动力工程学报, 2018, 38(5): 374-379. Dong Xinghui, Zhang Guang, Cheng Youxing, et al.A Method for Predicting Bearing Health Degradation Trend of Wind Turbines[J]. Journal of Chinese Society of Power Engineering, 2018, 38(5): 374-379. [5] Hang J, Zhang J, Cheng M, et al.An Overview Ofcondition Monitoring and Fault Diagnostic for Wind Energy Conversion System[J]. Transactions of China Electrotechnical Society (S1000-6753), 2013, 28(4): 261-271. [6] Gu X, Yang S, Liu Y, et al.Rolling Element Bearing Faults Diagnosis Based on Kurtogram and Frequency Domain Correlated Kurtosis[J]. Measurement Science & Technology (S0957-0233), 2016, 27(12): 125019 [7] 时培明, 梁凯, 赵娜, 等. 基于深度学习特征提取和粒子群支持向量机状态识别的齿轮智能故障诊断[J]. 中国机械工程, 2017, 28(9): 1056-1061, 1068. Shi Peiming, Liang Kai, Zhao Na, et al.Intelligent Fault Diagnosis for Gears Based on Deep Learning Feature Extraction and Particle Swarm Optimization SVM State Identification[J]. China Mechanical Engineering, 2017, 28(9): 1056-1061, 1068. [8] 李巍华, 单外平, 曾雪琼. 基于深度信念网络的轴承故障分类识别[J]. 振动工程学报, 2016, 29(2): 340-347. Li Weihua, Shan Waiping, Zeng Xueqiong.Bearing Fault Identification Based on Deep Belief Network[J]. Journal of Vibration Engineering, 2016, 29(2): 340-347. [9] Wang F, Jiang H, Shao H, et al.An Adaptive Deep Convolutional Neural Network for Rolling Bearing Fault Diagnosis[J]. Measurement Science and Technology (S1361-6501), 2017, 28(9): 2-16. [10] Cheng M, Zhang J, Hang J.Fault Diagnosis of Wind Turbine Based on Multi-sensors Information Fusion Technology[J]. IET Renewable Power Generation (S1752-1424), 2014, 8(3): 289-298. [11] Chen Z, Li W.Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network[J]. IEEE Transactions on Instrumentation and Measurement (S1557-9662), 2017, 66(7): 1693-1702. [12] Long X, Yang P, Guo H, et al.A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion[J]. Shock and Vibration (S1070-9622), 2019: 1-14. [13] 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39(6): 82-88. Zhao Guangquan, Liu Xiaoyong, Jiang Zedong, et al.Unsupervised Health Indicator of Bearing Based on Deep Learning[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 82-88. [14] Chen S, Qin J, Ji X, et al.Automatic Scoring of Multiple Semantic Attributes With Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images[J]. IEEE Transactions on Medical Imaging (S1558-254X), 2017, 36(3): 802-814. [15] Qiao Y C, Lew B V, Lelieveldt B P F, et al. Fast Automatic Step Size Estimation for Gradient Descent Optimization of Image Registration[J]. IEEE Transactions on Medical Imaging (S0278-0062), 2015, 35(2): 391-403. [16] Han J W, Zhang D W, Wen S F, et al.Two-Stage Learning to Predict Human Eye Fixations via SDAEs[J]. IEEE Trans Cybern (S2168-2275), 2016, 46(2): 487-498. [17] Colopy G W, Roberts S J, Clifton D A.Bayesian Optimization of Personalized Models for Patient Vital-Sign Monitoring[J]. IEEE J Biomed Health Inform (S2168-2194), 2018, 22(2): 301-310. [18] Jia F, Lei Y G, Lin J, et al. Deep Neural Networks: a Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of Rotating Machinery with Massive Data[J]. Mechanical Systems and Signal Processing (S0888-3270), 2016, 72/73: 303-315. |