Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (10): 2279-2292.doi: 10.16182/j.issn1004731x.joss.21-0583
• Physical Effector & Simulator • Previous Articles Next Articles
Rongxiu Lu1,2(
), Bihao Zhang1,2, Zhenlong Mo3
Received:2021-06-23
Revised:2021-08-09
Online:2022-10-30
Published:2022-10-18
CLC Number:
Rongxiu Lu, Bihao Zhang, Zhenlong Mo. Fatigue Detection Method Based on Facial Features and Head Posture[J]. Journal of System Simulation, 2022, 34(10): 2279-2292.
| 1 | Tuncer T, Dogan S, Ertam F, et al. A Dynamic Center and Multi Threshold Point Based Stable Feature Extraction Network for Driver Fatigue Detection Utilizing EEG Signals[J]. Cognitive Neurodynamics(S1871-4080), 2021, 15(7): 223-237. |
| 2 | 王博石, 吴修诚, 胡馨艺, 等. 基于单通道脑电信号的疲劳检测系统[J]. 计算机科学, 2020, 47(5): 225-229. |
| Wang Boshi, Wu Xiucheng, Hu Xinyi, et al. Fatigue Detection System Based on Single Channel EEG Signal [J]. Computer Science, 2020, 47(5): 225-229. | |
| 3 | Kyehoon, LEE, SUNG-AE, et al. Detecting Driver Fatigue by Steering Wheel Grip Force[J]. International Journal of Contents(S1738-6764), 2016, 12(1): 44-48. |
| 4 | Wang M, Guo L, Chen W. Blink Detection Using Adaboost and Contour Circle for Fatigue Recognition[J]. Computers&Electrical Engineering(S0045-7906), 2017, 58: 502-512. |
| 5 | Mandal B, Li L, Wang G S, et al. Towards Detection of Bus Driver Fatigue Based on Robust Visual Analysis of Eye State[J]. IEEE Transactions on Intelligent Transportation Systems(S1524-9050), 2017, 18(3): 1-13. |
| 6 | Zhao Xuepeng, Meng Chunning, Feng Mingkui, et al. Fatigue Detection Based on Cascade Convolutional Neural Network[J]. Journal of Optoelectronics·Laser (S1005-0086), 2017, 28(5): 497-502. |
| 7 | Omidyeganeh M, Shirmohammadi S, Abtahi S, et al. Yawning Detection Using Embedded Smart Cameras[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2016, 65(3): 570-582. |
| 8 | Kazemi V, Sullivan J. One Millisecond Face Alignment with an Ensemble of Regression Trees[C]// IEEE Conference on Computer Vision and Pattern Recognition, Columbus. New York: IEEE Press, 2014: 1867-1874. |
| 9 | Zhu X, Ramanan D. Face Detection, Pose Estimation, and Landmark Localization in the wild[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 2879-2886. |
| 10 | Le V, Brandt J, Lin Z, et al. Interactive Facial Feature Localization[C]// European Conference on Computer Vision. Heidelberg, Berlin: Springer, 2012: 679-692. |
| 11 | Belhumeur P N, Jacobs D W, Kriegman D J, et al. Localizing Parts of Faces Using a Consensus of Exemplars[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2013, 35(12): 2930-2940. |
| 12 | Sagonas C, Tzimiropoulos G, Zafeiriou S, et al. 300 Faces in-the-wild Challenge: The First Facial Landmark Localization Challenge [C]//IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 397-403. |
| 13 | Sagonas C, Antonakos E, Tzimiropoulos G, et al. 300Faces in-the-Wild Challenge: Database and Results [J]. Image and vision computing(S0262-8856), 2016, 47: 3-18. |
| 14 | Rafacl C, Richard E. Digital Image Processing[M]. Beijing: PHI, 2017. |
| 15 | Zhang Z. A Flexible New Technique for Camera Calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2000, 22(11): 1330-1334. |
| 16 | Huber P, Hu G, Tena R, et al. A Multiresolution 3D Morphable Face Model and Fitting Framework[C]//11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. 2016: 79-86. |
| 17 | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV: IEEE, 2016: 770-778. |
| 18 | Yosinski J, Clune J, Bengio Y, et al. How Transferable are Features in Deep Neural Networks?[C]// International Conference on Neural Information Processing Systems. Quebec, Canada: MIT Press, 2014: 3320-3328. |
| 19 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition [C]//International Conference on Learning Representations. 2015. |
| 20 | Ferrario V F, Sforza C, Serrao G, et al. Active Range of Motion of the Head and Cervical Spine: A Three-Dimensional Investigation in Healthy Young Adults[J]. Journal of Orthopaedic Research (S1554-527X), 2002, 20(1): 122-129. |
| 21 | Song F, Tan X, Chen S, et al. A Literature Survey on Robust and Efficient Eye Localization in Real-Life Scenarios [J]. Pattern Recognition(S0031-3203), 2013, 46(12): 3157-3173. |
| 22 | Abtahi S, Omidyeganeh M, Shirmohammadi S, et al. YawDD: A Yawning Detection Dataset[C]// ACM Multimedia Systems (MMSys). Singapore: ACM, 2014: 24-28. |
| 23 | 汪磊, 孙瑞山. 基于面部特征识别的管制员疲劳监测方法研究[J]. 中国安全科学学报, 2012, 22(7): 66-71. |
| Wang Lei, Sun Ruishan. Study on Feature Recognition-based Fatigue Monitoring Method for Air Traffic Contorller[J]. China Safety Science Journal, 2012, 22(7): 66-71. |
| [1] | Li Mingyu, Lin Jiaquan. Lightweight Driver Face Object Detection Algorithm Based on YOLOv8-DF [J]. Journal of System Simulation, 2025, 37(8): 2103-2114. |
| [2] | Wang Bingheng, Liu Tingrui, Yang Fan, Zhang Huan, Li Wei, Ma Ping, Yang Ming. Research on Requirements and Methods for Intelligent Assessment of Simulation Credibility [J]. Journal of System Simulation, 2025, 37(7): 1710-1722. |
| [3] | Chen Kun, Chen Liang, Xie Jiming, Liu Fengbo, Chen Taixiong, Wei Lukuan. Simulation Study on Adaptive Signal Control of Deformed Intersection Based on LSTM-GNN [J]. Journal of System Simulation, 2025, 37(6): 1343-1351. |
| [4] | Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning [J]. Journal of System Simulation, 2025, 37(3): 791-802. |
| [5] | Wang Xiao, Li Xiangyang, Liang Feng, Zhang Zhili. Research on Infrared and Visible Light Fusion Method Based on ResNet-50 and Laplacian Filtering [J]. Journal of System Simulation, 2025, 37(12): 3202-3211. |
| [6] | Hu yang, Li Zihao, Fu Deyi, Song Ziqiu, Fang Fang, Liu Jizhen. Deep Learning Modeling of Multi-scale Characteristics of Large-scale Wind Turbine Gearbox [J]. Journal of System Simulation, 2025, 37(10): 2454-2468. |
| [7] | Chen Guiliang, Liu Guowei, Li Yongchao, Cai Chao, Li Zihao, Yang Dong. Multisource Information Fusion Method for Human Gait Perception [J]. Journal of System Simulation, 2025, 37(10): 2522-2532. |
| [8] | Gu Hao, Wang Jiayu, Xiong Weili. Soft Sensor Modeling Based on Improved Transformer in Dual-stream Framework [J]. Journal of System Simulation, 2025, 37(10): 2594-2604. |
| [9] | Guo Yecai, Tong Shuang. A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification [J]. Journal of System Simulation, 2024, 36(9): 2065-2074. |
| [10] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
| [11] | Wei Jinyang, Wang Keping, Yang Yi, Fei Shumin. Incremental Image Dehazing Algorithm Based on Multiple Transfer Attention [J]. Journal of System Simulation, 2024, 36(4): 969-980. |
| [12] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
| [13] | Li Chen, He Ming, Dong Chen, Li Wei. Action Recognition Model of Directed Attention Based on Cosine Similarity [J]. Journal of System Simulation, 2024, 36(1): 67-82. |
| [14] | Zhang Fengquan, Cao Duo, Ma Xiaohan, Chen Baijun, Zhang Jiangxiao. Style Transfer Network for Generating Opera Makeup Details [J]. Journal of System Simulation, 2023, 35(9): 2064-2076. |
| [15] | Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section [J]. Journal of System Simulation, 2023, 35(1): 146-157. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||