[1] Shi H, Li P, Su C, et al.Robust Constrained Model Predictive Fault-tolerant Control for Industrial Processes with Partial Actuator Failures and Interval Time-varying Delays[J]. Journal of Process Control (S0959-1524), 2019, 75: 187-203. [2] Jia Q, Zhang Y, Chen W.Simultaneous Fault Detection and Isolation Based on Transfer Semi-nonnegative Matrix Factorization[J]. Ind. Eng. Chem. Res (S0888-5885), 2019, 58(19): 8184-8194. [3] Lee D D, Seung H S.Algorithms for Non-negative Matrix Factorization[C]// Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2000: 556-562. [4] Ding C, Li T, Jordan M I.Convex and Semi-nonnegative Matrix Factorizations[J]. IEEE Trans Pattern Anal Mach Intell (S0162-8828), 2010, 32(1): 45-55. [5] 何俊, 杨世锡, 甘春标. 一类滚动轴承振动信号特征提取与模式识别[J]. 振动, 测试与诊断, 2017, 37(6): 1181-1186, 1281. He Jun, Yang Shixi, Gan Chunbiao.Feature Extraction and Pattern Recognition of Vibration Signals in a Rolling Bearing[J]. Journal of Vibration, Meaturement & Diagnosis, 2017, 37(6): 1181-1186, 1281. [6] 全聪, 李晨亮, 吴黎兵. 基于二阶段迭代的非负矩阵分解的分类模型[J]. 武汉大学学报(理学版), 2020, 66(2): 190-196. Quan Cong, Li Chenliang, Wu Libing.2-STGNMF: Supervised 2-Stage Iterative Nonnegative Matrix Factorization Model for General Classification[J]. Journal of Wuhan University(Natural Science Edition), 2020, 66(2): 190-196. [7] 刘国庆, 卢桂馥, 张强. 一种稀疏图正则化的非负低秩矩阵分解算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(2): 295-303. Liu Guoqing, Lu Guifu, Zhang Qiang.A Non-negative Low-rank Matric Factorization Algorithm for Regularization of Sparse Graphs[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(2): 295-303. [8] 黄鹏飞, 孔祥兵, 景海涛. 一种改进的高光谱解混非负矩阵分解初始化方法[J]. 激光与光电子学进展, 2020, 57(6): 219-226. Huang Pengfei, Kong Xiangbing, Jing Haitao.Improved Hyperspectral Unmixed Initialization Method based on Non-negative Matrix Factorization[J]. Laser & Optoelectronics Progress, 2020, 57(6): 219-226. [9] 高茂庭, 王正欧. 几种文本特征降维方法的比较分析[J]. 计算机工程与应用, 2006(30): 157-159. Gao Maoting, Wang Zheng'ou.Comparing Dimension Reduction Methods of Text Feature Matrix[J]. Computer Engineering and Applications, 2006(30): 157-159. [10] 李煜, 何世钧. 基于投影梯度的非负矩阵分解盲信号分离算法[J]. 计算机工程, 2016, 42(2): 104-107, 112. Li Yu, He Shijun.Blind Signal Separation Algorithm for Non-negative Matrix Factorization based on Projected Gradient[J]. Computer Engineering, 2016, 42(2): 104-107, 112. [11] 殷海青, 刘红卫. 一种基于L1稀疏正则化和非负矩阵分解的盲源信号分离新算法[J]. 西安电子科技大学学报, 2010, 37(5): 835-841. Yin Haiqing, Liu Hongwei.New Blind Source Separation Algorithm based on L1 Sparse Regularization and Nonnegative Matrix Factorization[J]. Journal of Xidian University, 2010, 37(5): 835-841. [12] 朱晓洁. 基于稀疏性非负矩阵分解的滚动轴承复合故障诊断[J]. 中国工程机械学报, 2018, 16(6): 553-558. Zhu Xiaojie.Fault Diagnosis of Bear's Compound Fault Based on Sparse No-negative Matrix Factorization[J]. Chinese Journal of Construction Machinery, 2018, 16(6): 553-558. [13] 牛玉广, 王世林, 林忠伟, 等. 基于多元统计过程监控的锅炉过程故障检测[J]. 动力工程学报, 2017, 37(10): 829-836. Niu Yuguang, Wang Shilin, Lin Zhongwei, et al.Fault Detection of Industrial Processes Based on Multivariate Statistical Process Monitoring[J]. Journal of Chinese Society of Power Engineering, 2017, 37(10): 829-836. [14] 成洁, 李思燃. 基于递归图和局部非负矩阵分解的轴承故障诊断[J]. 工矿自动化, 2017, 43(7): 81-85. Cheng Jie, Li Siran.Bearing Fault Diagnosis based on Recurrence Plots and Local Non-negative Matrix Factorization[J]. Industry and Mine Automation, 2017, 43(7): 81-85. [15] Rai A, Upadhyay S H.The Application of Semi-nonnegative Matrix Factorization for Detection of Incipient Faults in Bearings[J]. Proc Inst Mech Eng Part C J Mech Eng Sci (S0954-4062), 2019, 233(13): 4543-4555. |