[1] Maurya C, Toshniwal D, Venkoparao G.Online Anomaly Detection via Class-imbalance Learning[C]// 8th International Conference on Contemporary Computing. Piscataway, New Jersey, USA: IEEE, 2015: 30-35. [2] Junsomboon N, Phienthrakul T.Combining Over-sampling and Under-sampling Techniques for Imbalance Dataset[C]// 9th International Conference on Machine Learning and Computing. New York, USA: ACM, 2017: 243-247. [3] 任家东, 刘新倩, 王倩, 等. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575. Ren Jiadong, Liu Xinqian, Wang Qian, et al.A Multi-level Intrusion Detection Method based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. [4] Aburomman A, Reaz M.A Survey of Intrusion Detection Systems based on Ensemble and Hybrid Classifiers[J]. Computer & Security (S0167-4048), 2017, 65: 135-152. [5] Kim J, Han Y, Lee J.Particle Swarm Optimization-deep Belief Network-based Rare Class Prediction Model for Highly Class Imbalance Problem[J]. Concurrency and Computation: Practice & Experience (S1532-0626), 2017, 29(11): 1-11. [6] Kwon D, Kim H, Kim J, et al.A Survey of Deep Learning-based Network Anomaly Detection[J]. Cluster Computing (S1386-7857), 2019, 22(s1): 949-961. [7] Yu Y, Long J, Cai Z.Session-based Network Intrusion Detection Using a Deep Learning Architecture[C]// 14th International Conference on Modeling Decisions for Artificial Intelligence. Berlin, German: Springer, 2017: 144-155. [8] Ng W, Zeng G, Zhang J, et al.Dual Autoencoders Features for Imbalance Classification Problem[J]. Pattern Recognition (S0031-3203), 2016, 60: 875-889. [9] Kingma D, Ba J.Adam: A method for Stochastic Optimization[C]// 3rd International Conference for Learning Representations. New York, USA: arXiv, 2015. [10] Canadian Institute for Cybersecurity. The NSL-KDD dataset [EB/OL].[2019-10-15]. https://www.unb.ca/cic/ datasets/ nsl.html. [11] Vincent P, Larochelle H, Lajoie I, et al.Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network With a Local Denoising Criterion[J]. Journal of Machine Learning Research (S1532-4435), 2010, 11: 3371-3408. [12] Liu M, Wu W, Gu Z, et al.Deep Learning based on Batch Normalization for P300 Signal Detection[J]. Neurocomputing (S0925-2312), 2018, 275: 288-297. [13] 陈建廷, 向阳. 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018, 29(7): 2071-2091. Chen Jianting, Xiang Yang.Survey of Unstable Gradients in Deep Neural Networks Training[J]. Journal of Software, 2018, 29(7): 2071-2091. [14] 谷丛丛, 王艳, 严大虎, 等. 基于自编码组合特征提取的分类方法研究[J]. 系统仿真学报, 2018, 30(11): 4132-4140. Gu Congcong, Wang Yan, Yan Dahu, et al.Research on Classification based on Autoencoder Combination Features Extraction Method[J]. Journal of System Simulation, 2018, 30(11): 4132-4140. [15] Qolomany B, Maabreh M, Al-Fuqaha A, et al.Parameters Optimization of deep Learning Models using Particle Swarm Optimization[C]// 13th International Wireless Communications and Mobile Computing Conference. Piscataway, New Jersey, USA: IEEE, 2017: 1285-1290. [16] Li R, Xiao X, Ni S, et al.Byte Segment Neural Network for Network Traffic Classification[C]// IEEE/ACM 26th International Symposium on Quality of Service. Piscataway, New Jersey, USA: IEEE, 2018: 1-10. |