Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (11): 2337-2347.doi: 10.16182/j.issn1004731x.joss.21-0646
• Modeling Theory and Methodology • Previous Articles Next Articles
Yaru Wang1(), Kai Yang1, Yongjie Zhai1(), Congbin Guo1, Wenqing Zhao2, Jie Su1
Received:
2021-07-09
Revised:
2021-09-28
Online:
2022-11-18
Published:
2022-11-25
Contact:
Yongjie Zhai
E-mail:wangyaru@ncepu.edu.cn;zhaiyongjie@ncepu.edu.cn
CLC Number:
Yaru Wang, Kai Yang, Yongjie Zhai, Congbin Guo, Wenqing Zhao, Jie Su. Transmission Line Insulator Recognition Based on Artificial Images Data Expansion[J]. Journal of System Simulation, 2022, 34(11): 2337-2347.
Table 1
Evaluation indexes of insulator identification performance based on different methods
评价指标 | 方法 | 卷积神经网络 | ||||
---|---|---|---|---|---|---|
AlexNet | VGG11 | VGG13 | ResNet18 | Inception_v3 | ||
准确率/% | 不进行数据扩充 | 93.10 | 89.34 | 89.32 | 80.98 | 62.60 |
未补偿的人工图像进行数据扩充 | 95.25 | 90.56 | 90.18 | 79.41 | 63.35 | |
基于CycleGAN的图像风格迁移数据扩充 | 95.03 | 90.96 | 90.08 | 77.70 | 63.31 | |
本文方法 | 96.40 | 91.02 | 91.26 | 82.44 | 64.29 | |
AUC | 不进行数据扩充 | 0.98 | 0.94 | 0.95 | 0.86 | 0.61 |
未补偿的人工图像进行数据扩充 | 0.98 | 0.97 | 0.95 | 0.86 | 0.63 | |
基于CycleGAN的图像风格迁移数据扩充 | 0.99 | 0.98 | 0.96 | 0.83 | 0.62 | |
本文方法 | 0.99 | 0.99 | 0.98 | 0.90 | 0.62 | |
迭代次数 | 不进行数据扩充 | 80 | 100 | 100 | 776 | 531 |
未补偿的人工图像进行数据扩充 | 50 | 80 | 110 | 456 | 382 | |
基于CycleGAN的图像风格迁移数据扩充 | 75 | 130 | 130 | 918 | 687 | |
本文方法 | 70 | 90 | 115 | 526 | 443 |
[1] | El-Mehalawy N, Awaad M, Eliyan T, et al. Electrical Properties of ZnO/Alumina Nano Composites for High Voltage Transmission Line Insulator[J]. Journal of Materials Science-Materials in Electronics (S0957-4522), 2018, 29(16): 13526-13533. |
[2] | Asadpourahmadchali M, Niasati M, Alinejad-Beromi Y. Improving Tower Grounding vs. Insulation Level to Obtain the Desired Back-flashover Rate for HV Transmission Lines[J]. International Journal of Electrical Power and Energy Systems (S0142-0615), 2020, 123(3): 106171. |
[3] | 胡毅, 刘凯, 吴田, 等. 输电线路运行安全影响因素分析及防治措施[J]. 高电压技术, 2014, 40(11): 3491-3499. |
Hu Yi, Liu Kai, Wu Tian, et al. Analysis of Influential Factors on Operation Safety of Transmission Line and Countermeasures[J]. High Voltage Engineering, 2014, 40(11): 3491-3499 | |
[4] | Nguyen V N, Jenssen R, Roverso D. Automatic Autonomous Vision-based Power Line Inspection: A Review of Current Status and the Potential Role of Deep Learning[J]. International Journal of Electrical Power & Energy Systems (S0142-0615), 2018, 99: 107-120. |
[5] | 邵瑰玮, 刘壮, 付晶, 等. 架空输电线路无人机巡检技术研究进展[J]. 高电压技术, 2020, 46(1): 14-22. |
Shao Guiwei, Liu Zhuang, Fu Jing, et al. Research Progress in Unmanned Aerial Vehicle Inspection Technology on Overhead Transmission Lines[J]. High Voltage Engineering, 2020, 46(1): 14-22. | |
[6] | Siddiqui Z A, Park U, Lee S W, et al. Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network[J]. Sensors (S1424-8220), 2018, 18(11): 3837. |
[7] | 张晶晶, 韩军, 赵亚博, 等. 形状感知的绝缘子识别与缺陷诊断[J]. 中国图象图形学报, 2020, 19(8): 1194-1201. |
Zhang Jingjing, Han Jun, Zhao Yabo, et al. Insulator Recognition and Defects Detection Based on Shape Perceptual[J]. Journal of Image and Graphics, 2020, 19(8): 1194-1201. | |
[8] | Ge B, Hou C, Liu Y, et al. Anomaly Detection of Power Line Insulator from Aerial Imagery with Attribute Self-supervised Learning[J]. International Journal of Remote Sensing (S0143-1161), 2021(2): 1-21. |
[9] | Govindaraju P, Muniraj C. Monitoring and Optimizing the State of Pollution of High Voltage Insulators Using Wireless Sensor Network Based Convolutional Neural Network[J]. Microprocessors and Microsystems (S0141-9331), 2020, 79: 103299. |
[10] | Tao X, Zhang D, Wang Z, et al. Detection of Power Line Insulator Defects Using Aerial Images Analyzed with Convolutional Neural Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems (S2168-2216), 2018, 50(4): 1486-1498. |
[11] | Ling Z, Qiu R C, Jin Z, et al. An Accurate and Real-time Self-blast Glass Insulator Location Method Based on Faster R-CNN and U-net with Aerial Images[J]. CSEE Journal of Power and Energy Systems (S2096-0042), 2019, 5(4): 474-482. |
[12] | Zajac M, Zołna K, Rostamzadeh N, et al. Adversarial Framing for Image and Video Classification[C]//AAAI Conference on Artificial Intelligence. Honolulu, HI: AAAI, 2019, 33(1): 10077-10078. |
[13] | Xi P, Tang Z, Fei Y, et al. Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE Press, 2018: 2226-2234. |
[14] | Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2014, 3: 2672-2680. |
[15] | Jairo V, Chen Y Q, Wang J. FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN) Based Ball-bearing Failure Detection Method[J]. Information Sciences (S1674-733X), 2020, 542: 195-211. |
[16] | Wang S, Yang Y, Wu Z, et al. Data Augmentation Using Deep Generative Models for Embedding Based Speaker Recognition[J]. IEEE-ACM Transactions on Audio, Speech, and Language Processing (S2329-9290), 2020, 28: 2598-2609. |
[17] | Zhu J Y, Park T, Isola P, et al. Unpaired Image-toimage Translation Using Cycle-consistent Adversarial Networks[C]//IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2242-2251. |
[18] | 刘哲良, 朱玮, 袁梓洋. 结合全卷积网络与CycleGAN的图像实例风格迁移[J]. 中国图象图形学报, 2019, 24(8): 1283-1291. |
Liu Zheliang, Zhu Wei, Yuan Ziyang. Image Instance Style Transfer Combined with Fully Convolutional Network and CycleGAN[J]. Journal of Image and Graphics, 2019, 24(8): 1283-1291. | |
[19] | Ma Z, Li J, Wang N, et al. Semantic-related Image Style Transfer with Dual-consistency Loss[J]. Neurocomputing (S0925-2312), 2020, 406: 135-149. |
[20] | Xu Z, Wilber M, Fang C, et al. Adversarial Training for Fast Arbitrary Style Transfer[J]. Computers & Graphics- UK (S0097-8493), 2020, 87: 1-11. |
[21] | 马岽奡, 唐娉, 赵理君, 等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021, 26(3): 487-502. |
Ma Dongao, Tang Ping, Zhao Lijun, et al. Review of Data Augmentation for Image in Deep Learning[J]. Journal of Image and Graphics, 2021, 26(3): 487-502. | |
[22] | Zhang K, Cao Z, Wu J. Circular Shift: An Effective Data Augmentation Method for Convolutional Neural Network on Image Classification[C]//IEEE International Conference on Image Processing, Electr Network: IEEE Press, 2020: 1676-1680. |
[23] | Gupta A, Vedaldi A, Zisserman A. Synthetic Data for Text Localisation in Natural Images[C]//IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE Press, 2016: 2315-2324. |
[24] | 柴伟佳, 王连明. 卷积神经网络的多字体汉字识别[J]. 中国图象图形学报, 2018, 23(3): 410-417. |
Chai Weijia, Wang Lianming. Recognition of Chinese Characters Using Deep Convolutional Neural Network[J]. Journal of Image and Graphics, 2018, 23(3): 410-417. | |
[25] | Ekin D, Cubuk B Z, Dandelion M, et al. AutoAugment: Learning Augmentation Policies from Data[EB/OL]. (2018-05-24) [2019-04-11]. . |
[26] | 翟永杰, 杨旭, 王金娜, 等. 平行视觉框架下深度卷积神经网络可视化分析[J]. 计算机工程与应用, 2020, 56(19): 139-145. |
Zhai Yongjie, Yang Xu, Wang Jinna, et al. Visual Analysis of Deep Convolutional Neural Networks in Parallel Vision[J]. Computer Engineering and Applications, 2020, 56(19): 139-145. | |
[27] | 王坤峰, 鲁越, 王雨桐, 等. 平行图像:图像生成的一个新型理论框架[J]. 模式识别与人工智能, 2017, 30(7): 577-587. |
Wang Kunfeng, Lu Yue, Wang Yutong, et al. Parallel Imaging: A New Theoretical Framework for Image Generation[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 577-587. | |
[28] | Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for Simplicity: the All Convolutional Net[EB/OL]. (2014-12-21) [2015-4-13]. . |
[29] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2012, 25: 1097-1105. |
[1] | Lifeng Zhang, Huiren Wang. Image Reconstruction of Electrical Capacitance Tomography Based on Convolutional Neural Network and Finite Element Simulation [J]. Journal of System Simulation, 2022, 34(4): 712-718. |
[2] | Bangqian Ao, Sha Yang, Jinqing Linghu, zhenhuan Ye. Design of Fatigue Driving Detection System Based on Cascaded Neural Network [J]. Journal of System Simulation, 2022, 34(2): 323-333. |
[3] | Jiale Xu, Haidong Zhang, Donghai Zhao, Wancheng Ni. Tactical Maneuver Strategy Learning from Land Wargame Replay Based on Convolutional Neural Network [J]. Journal of System Simulation, 2022, 34(10): 2181-2193. |
[4] | Yecai Guo, Qingwei Wang. Modulation Recognition Algorithm Based on Truncated Migration and Parallel ResNet [J]. Journal of System Simulation, 2022, 34(09): 2009-2018. |
[5] | Zhao Ying, Lu Yao, Zhang Jian, Liang Qidi, Long Wei. Multi-view Human Action Recognition Based on Deep Neural Network [J]. Journal of System Simulation, 2021, 33(5): 1019-1030. |
[6] | Tong Weiguo, Pang Xuechun, Zhu Genghong. Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network [J]. Journal of System Simulation, 2021, 33(4): 883-891. |
[7] | Huang Xin, Fang Yu, Gu Mengdan. Classification of Chest X-ray Disease Based on Convolutional Neural Network [J]. Journal of System Simulation, 2020, 32(6): 1188-1194. |
[8] | Fan Minglu, Wang Yan, Ji Zhicheng. Fault Diagnosis for Bearings of Unbalanced Data Based on Feature Generation [J]. Journal of System Simulation, 2020, 32(12): 2438-2448. |
[9] | Wang Hongjun, Li Zouzou, Zou Xiangjun. Wood Surface Defect Detection Based on Adaboost and CNN [J]. Journal of System Simulation, 2019, 31(8): 1636-1645. |
[10] | Lu Yuqiu, Sun Jinyu, Ma Shiwei. Moving Object Detection Based on Deep Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2275-2280. |
[11] | Geng Jianghai, Zhong Zheng, Jiang Shuo, Lü Fangcheng, Liu Yunpeng, Zhou Songsong. Study on the Effect of Salt Fog on Polluted Insulator Under Switching Impulse [J]. Journal of System Simulation, 2018, 30(7): 2675-2681. |
[12] | Xia Min, Shen Maoyang, Wang Jianfeng, Wang Yangguang. Cloud Fraction of Satellite Imagery Based On Convolutional Neural Networks [J]. Journal of System Simulation, 2018, 30(5): 1623-1630. |
[13] | Wu Yunpu, Jin Weidong, Huang Yingkun. Fault Diagnosis of High Speed Train Bogie Based on Multi-domain Fusion CNN [J]. Journal of System Simulation, 2018, 30(11): 4492-4497. |
[14] | Cheng Haiyan, Han Pu, Wang Di, Zhai Yongjie. Location Method of Insulators in Power Grid Patrol Aerial Images [J]. Journal of System Simulation, 2017, 29(6): 1327-1336. |
[15] | Wang Song, Liu Fuchang, Huang Ji, Xu Weiwei, Dong Hongwei. Pose Estimation Using Convolutional Neural Network with Synthesis Depth Data [J]. Journal of System Simulation, 2017, 29(11): 2618-2623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||