[1] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2009: 290-307. Sheng Peixuan, Mao Jietai, Li Jianguo, et al.Atmospheric Physics[M]. Beijing: Peking University Press, 2009: 290-307. [2] 杨军, 陈宝君, 银燕. 云降水物理学[M]. 北京: 气象出版社, 2011: 1-15. Yang Jun, Chen Baojun, Yin Yan.Physics of Clouds and Precipitation[M]. Beijing: China Meteorological Press, 2011: 1-15. [3] Hocking J, Rayer P, Rundle D, et al.RTTOV v11 Users Guide[R]. Exeter, Devon, UK: NWP-SAF report, Met Office, 2013. [4] Han Y, Delst P V, Liu Q, et al.User's Guide to the JCSDA Community Radiative Transfer Model(Beta Version)[R]. Camp Springs, Maryland, USA: Joint Center for Satellite Data Assimilation, 2005. [5] 丁伟钰, 万齐林. “珍珠”台风卫星红外通道亮温的数值模拟[J]. 大气科学, 2008, 32(3): 572-580. Ding Weiyu, Wan Qilin.The Simulation of Typhoon Chanchu Infrared Channels Brightness Temperature[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(3): 572-580. [6] 马刚, 邱崇践, 黎光清, 等. 利用RTTOV7快速辐射传输模式模拟风云二号红外和水汽成像通道辐射率的研究[J]. 红外与毫米波学报, 2006, 25(1): 37-40. Ma Gang, Qiu Chongjian, Li Guangqing, et al.Study of Simulation on Radiance from Infrared and Water Vapor Channel of FY2B by a Fast Forward Model-RTTOV7[J]. Journal of Infrared and Millimeter Waves, 2006, 25(1): 37-40. [7] Chevallier F, Kelly G.Model Clouds as Seen from Space: Comparison with Geostationary Imagery in the 11-μm Window Channel[J]. Mon Weather Rev (S0027-0644), 2002, 130(3): 712-722. [8] 张兴海, 端义宏. FY-2F红外亮温资料模拟与偏差分析[J]. 气象, 2014, 40(9): 1066-1075. Zhang Xinghai, Duan Yihong.Simulation of Brightness Temperature in Infrared Channel of FY-2F and Bias Analysis[J]. Meteorological Monthly, 2014, 40(9): 1066-1075. [9] 史小康, 李耀东, 刘健文, 等. FY-2D红外亮温模拟及对WRF模式云预报误差的响应[J]. 中国科学: 地球科学, 2018, 48(8): 1096-1109. Shi Xiaokang, Li Yaodong, Liu Jianwen, et al.Simulation of FY-2D Infrared Brightness Temperature and Sensitivity Analysis to the Errors of WRF Simulated Cloud Variables[J]. Science China Earth Sciences, 2018, 48(8): 957-972. [10] Lecun Y, Bengio Y, Hinton G.Deep Learning[J]. Nature (S0028-0836), 2015, 521(7553): 436-444. [11] Pathak D, Krahenbuhl P, Donahue J, et al.Context Encoders: Feature Learning by Inpainting[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2536-2544. [12] Zhang R, Isola P, Efros A A.Colorful Image Colorization[C]// European Conference on Computer Vision (ECCV). Berlin, German: Springer, 2016: 649-666. [13] Mathieu M, Couprie C, Lecun Y.Deep Multi-scale Video Prediction beyond Mean Square Error[C]// International Conference on Learning Representations (ICLR). Caribe Hilton, San Juan, Puerto Rico: arXiv, 2016: 1-14. [14] Goodfellow I, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets [C]// Advances in Neural Information Processing Systems (NIPS). Cambridge, MA, USA: MIT Press, 2014: 2672-2680. [15] Hu J, Shen L, Albanie S, et al.Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2017, 42(8): 2011-2023. [16] Ronneberger O, Fischer P, Brox T.U-Net: Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). Berlin, German: Springer, 2015: 2-3. [17] Isola P, Zhu J Y, Zhou T, et al.Image-to-image Translation with Conditional Adversarial Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 5967-5976. [18] Kingma D, Ba J.Adam: A Method for Stochastic Optimization[C]// International Conference on Learning Representations (ICLR). San Diego, CA, USA: arXiv, 2015: 1-13. [19] Shi W, Caballero J, Huszar F, et al.Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 1874-1883. |