[1] 刘振亚. 中国电力与能源[M]. 北京: 中国电力出版社, 2012. Liu Zhenya.China Power and Energy[M]. Beijing: China Electric Power Press, 2012. [2] Tchakoua P, Wamkeue R, Ouhrouche M, et al.Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges[J]. Energies (S1996- 1073), 2014, 7(4): 2595-2630. [3] 金晓航, 孙毅, 单继宏, 等. 风力发电机组故障诊断与预测技术研究综述[J]. 仪器仪表学报, 2017, 38(5): 1041-1053. Jin Xiaohang, Sun Yi, Shan Jihong, et al.Fault Diagnosis and Prognosis for Wind Turbines: An Overview[J]. Chinese Journal of Scientific Instrument, 2017, 38(5): 1041-1053. [4] 李大中, 常城, 许炳坤. 基于样本优化的风电机组齿轮箱轴承温度预测[J]. 系统仿真学报, 2017, 29(2): 374-380. Li Dazhong, Chang Cheng, Xu Bingkun.Wind Turbine Gearing Temperature Prediction based on Sample Optimization[J]. Journal of System Simulation, 2017, 29(2): 374-380. [5] 黄南天, 杨学航, 蔡国伟, 等. 采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J]. 中国电机工程学报, 2020, 40(2): 563-574. Huang Nantian, Yang Xuehang, Cai Guowei, et al.A Deep Adversarial Diagnosis Method for Wind Turbine Main Bearing Fault with Imbalanced Small Sample Scenarios[J]. Proceedings of the CSEE, 2020, 40(2): 563-574. [6] 刘帅, 刘长良, 甄成刚. 基于数据分类重建的风电机组故障预警方法[J]. 仪器仪表学报, 2019, 40(8): 1-11. Liu Shuai, Liu Changliang, Zhen Chenggang.Fault Warning Method for Wind Turbine based on Classified Data Reconstruction[J]. Chinese Journal of Scientific Instrument, 2019, 40(8): 1-11. [7] 郑小霞, 李美娜. 基于小波包和并行隐马尔科夫的风力机易损部件健康状态评价[J]. 太阳能学报, 2019, 40(2): 370-379. Zheng Xiaoxia, Li Meina.Health State Evaluation based on Wavelet Packet and PCHMM for Vulnerable Components of Wind Turbines[J]. Acta Energiae Solaris Sinica, 2019, 40(2): 370-379. [8] 罗毅, 甄立敬. 基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法[J]. 振动与冲击, 2015, 34(3): 210-214. Luo Yi, Zhen Lijing.Diagnosis Method of Turbine Gearbox Gear Crack based on Wavelet Packet and Cepstrum Analysis[J]. Journal of Vibration and Shock, 2015, 34(3): 210-214. [9] Liang G, Saibo X, Naipeng L, et al.Deep Convolution Feature Learning for Health Indicator Construction of Bearings[C]// 2017 Prognostics and System Health Management Conference, 2017: 1-6. [10] 马宏忠, 李思源. 双馈风力发电机轴承故障诊断研究现状与发展[J]. 电机与控制应用, 2018, 45(9): 117-124. Ma Hongzhong, Li Siyuan.Research Status and Development of Bearing Fault Diagnosis for Doubly-fed Induction Generator[J]. Electric Machines & Control Application, 2018, 45(9): 117-124. [11] Zivkovic Z.Improved Adaptive Gaussian Mixture Model for Background Subtraction[C]// The 17th International Conference on Pattern Recognition, ICPR 2004, IEEE, 2004: 1-4. [12] 孙溧. 双馈式异步风力发电机发电过程的建模与仿真研究[D]. 重庆: 重庆大学, 2016. Sun Li.Modeling and Simulation of Doubly-fed Induction Wind Power System[D]. Chongqing: Chongqing University, 2016. [13] Huang G B, Zhu Q Y, Siew C K.Extreme Learning Machine: Theory and Applications[J]. Neurocomputing (S0925-2312), 2006, 70(1/3): 489-501. [14] 董正. 基于AdaBoost_RVM的滚动轴承剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. Dong Zheng.Research on Remaining Useful Life Prediction Method of a Rolling Bearing based on AdaBoost_RVM[D]. Harbin: Harbin University of Science and Technology, 2018. [15] Wang Q, Bo Z, Ma H, et al.A Method for Rapidly Evaluating Reliability and Predicting Remaining Useful Life using Two-dimensional Convolutional Neural Network with Signal Conversion[J]. Journal of Mechanical Science and Technology (S1976-3824), 2019, 33(6): 2561-2571. [16] Lecun Y, Bengio Y, Hinton G.Deep Learning[J]. Nature (S0028-0836), 2015, 521(7553): 436-444. [17] Greff K, Srivastava R K, Koutník J, et al.LSTM: A Search Space Odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems (S1045-9227), 2015, 28(10): 1-11. [18] Graves A, Schmidhuber J.Frame Wise Phoneme Classification with Bidirectional LSTM and other Neural Network Architectures[J]. Neural Networks (S0893- 6080), 2005, 18(5/6): 602-610. [19] 刘全, 梁斌, 徐进, 等. 一种用于基于方面情感分析的深度分层网络模型[J]. 计算机学报, 2018, 41(12): 2637-2652. Liu Quan, Liang Bin, Xu Jin, et al.A Deep Hierarchical Neural Network Model for Aspect-based Sentiment Analysis[J]. Chinese Journal of Computers, 2018, 41(12): 2637-2652. [20] 任朝淦, 杨燕, 贾真, 等. 基于注意力机制的问句实体链接[J]. 模式识别与人工智能, 2018, 31(12): 1127-1133. Ren Chaogan, Yang Yan, Jia Zhen, et al.Attention Mechanism based Question Entity Linking[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(12): 1127-1133. [21] Liu J, Wang G, Duan L Y, et al.Skeleton-Based Human Action Recognition with Global Context-Aware Attention LSTM Networks[J]. IEEE Transactions on Image Processing (S1057-7149), 2018, 27(4): 1586-1599. [22] Zhou Peng, Shi Wei, Tian Jun, et al.Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification[C]// The 54th Annual Meeting of the Association for Computational Linguistics, 2016(2): 207-212. |