Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (11): 2348-2358.doi: 10.16182/j.issn1004731x.joss.21-0261
• Modeling Theory and Methodology • Previous Articles Next Articles
Jiarui Liu(
), Guotian Yang(
), Xiaowei Wang
Received:2021-03-29
Revised:2021-05-11
Online:2022-11-18
Published:2022-11-25
Contact:
Guotian Yang
E-mail:ljr@163.com;ygt@ncepu.edu.cn
CLC Number:
Jiarui Liu, Guotian Yang, Xiaowei Wang. A Wind Turbine Fault Diagnosis Method Based on Siamese Deep Neural Network[J]. Journal of System Simulation, 2022, 34(11): 2348-2358.
Table 4
Fault diagnosis results of different deep learning methods
| 数据集 | 模型 | Precision | Recall | F1score | Accuracy |
|---|---|---|---|---|---|
| A | LSTM | 0.837±0.030 9 | 0.871±0.025 9 | 0.853±0.038 7 | 0.858±0.035 3 |
| 1-D CNN | 0.912±0.018 7 | 0.904±0.026 8 | 0.904±0.025 1 | 0.908±0.025 6 | |
| 1-D CNN-LSTM | 0.922±0.009 2 | 0.925±0.012 4 | 0.921±0.016 0 | 0.923±0.010 1 | |
| B | LSTM | 0.951±0.014 1 | 0.934±0.019 4 | 0.938±0.016 4 | 0.947±0.023 5 |
| 1-D CNN | 0.974±0.008 9 | 0.966±0.005 9 | 0.968±0.007 1 | 0.969±0.008 9 | |
| 1-D CNN-LSTM | 0.979±0.005 5 | 0.971±0.003 7 | 0.974±0.004 1 | 0.986±0.002 7 |
| [1] | 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189. |
| Chen Xuefeng, Guo Yanjie, Xu Caibin, et al. Review of Fault Diagnosis and Health Monitoring for Wind Power Equipment[J]. China Mechanical Engineering, 2020, 31(2): 175-189. | |
| [2] | Wang J, Qiao W, Qu L. Wind Turbine Bearing Fault Diagnosis Based on Sparse Representation of Condition Monitoring Signals[J]. IEEE Transactions on Industry Applications (S0093-9994), 2019, 55(2): 1844-1852. |
| [3] | Liu Z, Wang X, Zhang L. Fault Diagnosis of Industrial Wind Turbine Blade Bearing Using Acoustic Emission Analysis[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2020, 69(9): 6630-6639. |
| [4] | 邓子豪, 李录平, 杨波, 等. 基于SCADA数据特征提取的风电机组偏航齿轮箱故障诊断方法研究[J]. 动力工程学报, 2021, 41(1): 43-50. |
| Deng Zihao, Li Luping, Yang bo, et al. Research on Fault Diagnosis Method of Wind Turbine Yaw Gearbox Based on SCADA Data Feature Extraction[J]. Journal of Power Engineering, 2021, 41(1): 43-50. | |
| [5] | 余萍, 曹洁. 深度学习在故障诊断与预测中的应用[J]. 计算机工程与应用, 2020, 56(3): 1-18. |
| Yu Ping, Cao Jie. Deep Learning Approach and Its Application in Fault Diagnosis and Prognosis[J]. Computer Engineering and Applications, 2020, 56(3): 1-18. | |
| [6] | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature (S0028-0836), 2015, 521(7553): 436-444. |
| [7] | 吴定会, 祝志超, 韩欣宏. 基于BO-SDAE多源信号的风电机组轴承故障诊断[J]. 系统仿真学报, 2021, 33(5): 1148-1156. |
| Wu Dinghui, Zhu Zhichao, Han Xinhong. Wind Turbine Bearing Fault Diagnosis Based on BO-SDAE Multi-source Signals[J]. Journal of System Simulation, 2021, 33(5): 1148-1156. | |
| [8] | Ince T, Kiranyaz S, Eren L, et al. Real-Time Motor Fault Detection by 1D Convolutional Neural Networks[J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2016, 63(11): 7067-7075. |
| [9] | Jiang G, He H, Yan J, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2018, 66(4): 3196-3207. |
| [10] | Lei J, Liu C, Jiang D. Fault Diagnosis of Wind Turbine Based on Long Short-term Memory Networks[J]. Renewable Energy, 2019, 133(4): 422-432. |
| [11] | 赵洪山, 闫西慧, 王桂兰, 等. 应用深度自编码网络和XGBoost的风电机组发电机故障诊断[J]. 电力系统自动化, 2019, 43(1): 81-90. |
| Zhao Hongshan, Yan Xihui, Wang Guilan, et al. Fault Diagnosis of Wind Turbine Generator Based on Deep Autoencoder Network and XGBoost[J]. Automation of Electric Power Systems, 2019, 43(1): 81-90. | |
| [12] | 魏书荣, 张鑫, 符杨, 等. 基于GRA-LSTM-Stacking模型的海上双馈风力发电机早期故障预警与诊断[J]. 中国电机工程学报, 2021, 41(7): 2373-2383. |
| Wei Shurong, Zhang Xin, Fu Yang, et al. Early Fault Warning and Diagnosis of Offshore Doubly-fed Wind Turbines Based on GRA-LSTM-Stacking Model[J]. Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(7): 2373-2383. | |
| [13] | 罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239. |
| Luo Huilan, Chen Hongkun. A Survey of Research on Target Detection Based on Deep Learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239. | |
| [14] | Kingma D P, Ba J L. Adam: A Method for Stochastic Optimization[C]//3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings. New York: ACM, 2015: 1-15. |
| [15] | Bromley J, Guyon I, Lecun Y, et al. Signature Verification Using a “Siamese” Time Delay Neural Network[C]//Advances in Neural Information Processing Systems 6, 7th NIPS Conference. Cambridge, MA: MIT, 1993: 669. |
| [16] | Liu X, Zhou Y, Zhao J, et al. Siamese Convolutional Neural Networks for Remote Sensing Scene Classification[J]. IEEE Geoscience and Remote Sensing Letters (S1545-598X), 2019, 69(9): 6630-6639. |
| [17] | Yin H, Wang Y, Ding X, et al. 3D LiDAR-Based Global Localization Using Siamese Neural Network[J]. IEEE Transactions on Intelligent Transportation Systems (S1524-9050), 2019, 21(4): 1380-1392. |
| [1] | Wang Bingheng, Liu Tingrui, Yang Fan, Zhang Huan, Li Wei, Ma Ping, Yang Ming. Research on Requirements and Methods for Intelligent Assessment of Simulation Credibility [J]. Journal of System Simulation, 2025, 37(7): 1710-1722. |
| [2] | Chen Kun, Chen Liang, Xie Jiming, Liu Fengbo, Chen Taixiong, Wei Lukuan. Simulation Study on Adaptive Signal Control of Deformed Intersection Based on LSTM-GNN [J]. Journal of System Simulation, 2025, 37(6): 1343-1351. |
| [3] | Jiang Lun, Wang Dajiang, Sun Wenlei, Bao Shenghui, Liu Han, Chang Saike. Research on Transformer Fault Diagnosis Method Based on Digital Twin [J]. Journal of System Simulation, 2025, 37(3): 775-790. |
| [4] | Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning [J]. Journal of System Simulation, 2025, 37(3): 791-802. |
| [5] | Yu Xiangxing, Zhao Yandong, Zhang Baolin. Vibration Control of Offshore Wind Turbine Towers Based on Eddy Current Nonlinear Energy Sink [J]. Journal of System Simulation, 2025, 37(12): 3007-3017. |
| [6] | Li Bin, Wang Yuchuo. Fault Diagnosis Method for Photovoltaic Systems Based on Multi-strategy Fusion [J]. Journal of System Simulation, 2025, 37(12): 3018-3032. |
| [7] | Wang Xiao, Li Xiangyang, Liang Feng, Zhang Zhili. Research on Infrared and Visible Light Fusion Method Based on ResNet-50 and Laplacian Filtering [J]. Journal of System Simulation, 2025, 37(12): 3202-3211. |
| [8] | Tian Yuanxing, Han Zeyin, Wang Ning, Su Baoding, Xiang Weilin. Twin Modeling of Gearbox Fault Early Warning System Based on Spatio-Temporal Characteristics [J]. Journal of System Simulation, 2025, 37(11): 2867-2876. |
| [9] | Hu yang, Li Zihao, Fu Deyi, Song Ziqiu, Fang Fang, Liu Jizhen. Deep Learning Modeling of Multi-scale Characteristics of Large-scale Wind Turbine Gearbox [J]. Journal of System Simulation, 2025, 37(10): 2454-2468. |
| [10] | Gu Hao, Wang Jiayu, Xiong Weili. Soft Sensor Modeling Based on Improved Transformer in Dual-stream Framework [J]. Journal of System Simulation, 2025, 37(10): 2594-2604. |
| [11] | Guo Yecai, Tong Shuang. A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification [J]. Journal of System Simulation, 2024, 36(9): 2065-2074. |
| [12] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
| [13] | Wei Jinyang, Wang Keping, Yang Yi, Fei Shumin. Incremental Image Dehazing Algorithm Based on Multiple Transfer Attention [J]. Journal of System Simulation, 2024, 36(4): 969-980. |
| [14] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
| [15] | Li Chen, He Ming, Dong Chen, Li Wei. Action Recognition Model of Directed Attention Based on Cosine Similarity [J]. Journal of System Simulation, 2024, 36(1): 67-82. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||