[1] 周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术[M]. 北京: 科学技术出版社, 2011. Zhou Donghua, Li Gang, Li Yuan.Data Driven Industrial Process Fault Diagnosis Technology[M]. Beijing: Science and Technology Press, 2011. [2] 李元, 马雨含, 郭金玉. 基于动态多向局部离群因子的在线故障检测[J]. 计算机应用研究, 2017, 34(11): 3259-3261, 3266. Li Yuan, Ma Yuhan, Guo Jinyu.Online Fault Detection based on Dynamic Multidirectional Local Outliers[J]. Computer Application Research, 2017, 34(11): 3259-3261, 3266. [3] 刘强, 柴天佑, 秦泗钊, 等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010, 25(6): 801-807. Liu Qiang, Chai Tianyou, Qin Sizhao, et al.Overview of Industrial Process Monitoring and Fault Diagnosis Based on Data and Knowledge[J]. Control and Decision, 2010, 25(6): 801-807. [4] Li Y, Zhang X M.Diffusion Maps based K-nearest-neighbor Rule Technique for Semiconductor Manufacturing Process Fault Detection[J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 2014, 136(15): 47-57. [5] Yu N, Luo J R.Study on Magneto-Hydro- Dynamics Disturbance Signal Feature Classification Using Improved S-Transform Algorithm and Radial Basis Function Neural Network[J]. Sensors & Transducers (S2306-8515), 2014, 178(9): 219-225. [6] 毛茗茗. 基于KPCA-FCM的工业过程故障检测与诊断[D]. 北京: 北京化工大学, 2017. Mao Mingming.KPCA-FCM-based Industrial Process Fault Detection and Diagnosis[D]. Beijing: Beijing University of Chemical Technology, 2017. [7] 王英赫. 基于模糊聚类的间歇过程故障诊断的研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. Wang Yinghe.Research on Fault Diagnosis of Batch Process Based on Fuzzy Clustering[D]. Harbin: Harbin University of Science and Technology, 2018. [8] 张勇, 钟建伟, 周文辉, 等. 基于K-means聚类分析的变压器故障诊断[J]. 湖北民族学院学报(自然科学版), 2018, 36(4): 452-455. Zhang Yong, Zhong Jianwei, Zhou Wenhui, et al.Transformer Fault Diagnosis based on K-means Cluster Analysis[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2018, 36(4): 452-455. [9] 管红立, 李亚芳, 郑文栋, 等. 基于相空间重构理论和k-means聚类算法电弧故障诊断[J]. 电器与能效管理技术, 2017(17): 1-8. Guan Hongli, Li Yafang, Zheng Wendong, et al.Arc Fault Diagnosis Based on Phase Space Reconstruction Theory and K-means Clustering Algorithm[J]. Electrical Appliance and Energy Efficiency Management Technology, 2017(17): 1-8. [10] 王晶, 刘莉, 曹柳林, 等. 基于核Fisher包络分析的间歇过程故障诊断[J]. 化工学报, 2014, 65(4): 1317-1326. Wang Jing, Liu Li, Cao Liulin, et al.Fault Diagnosis of Batch Process Based on Nuclear Fisher Envelope Analysis[J]. Journal of Chemical Industry and Engineering, 2014, 65(4): 1317-1326. [11] Jiang Qingchao, Yan Xuefeng.Nonlinear Plant-wide Process Monitoring Using MI-spectral Clustering and Bayesian Inference- based Multiblock KPCA[J]. Journal of Process Control (S0959-1524), 2015, 32(1): 38-50. [12] Yang X F, Goh A, Qiu A Q.Locally Linear Diffeomorphic Metric Embedding (LLDME) for Surface-based Anatomical Shape Modeling[J]. Neuroimage (S1053-8119), 2011, 56(1): 149-161. [13] Miao A M, Ge Z Q, Song Z H, et al.Nonlocal Structure Constrained Neighborhood Preserving Embedding Model and Its Application for Fault Detection[J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 2015, 142(1): 184-196. [14] Wang J.Real Local-linearity Preserving Embedding[J]. Neurocomputing (S0925-2312), 2014, 136(20): 7-13. [15] Li B W, Zhang Y.Supervised Locally Linear Embedding Projection (SLLEP) for Machinery Fault Diagnosis[J]. Mechanical Systems and Signal Processing (S0888-3270), 2011, 25(8): 3125-3134. [16] 王千, 王成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24. Wang Qian, Wang Cheng, Feng Zhenyuan, et al.Review of K-means Clustering Algorithm Research[J]. Electronic Design Engineering, 2012, 20(7): 21-24. [17] 李元, 白岩松. 改进主成分分析的KNN故障检测研究[J]. 沈阳化工大学学报, 2018, 32(4): 366-371. Li Yuan, Bai Yansong.Research on KNN Fault Detection with Improved Principal Component Analysis[J]. Journal of Shenyang University of Chemical Technology, 2018, 32(4): 366-371. [18] 郭金玉, 韩建斌, 李元, 等. 基于局部Fisher判别分析的复杂化工过程故障诊断[J]. 计算机应用研究, 2018, 35(4): 1122-1125,1129. Guo Jinyu, Han Jianbin, Li Yuan, et al.Fault Diagnosis of Complex Chemical Processes based on Local Fisher Discriminant Analysis[J]. Computer Application Research, 2018, 35(4): 1122-1125, 1129. [19] 张凯林. 基于主元分析和偏最小二乘的TE过程监测方法的研究[D]. 天津: 天津理工大学, 2015. Zhang Kailin.Research on TE Process Monitoring Method based on Principal Component Analysis and Partial Least Squares[D]. Tianjin: Tianjin University of Technology, 2015. [20] 张姮. TE过程故障诊断方法比较研究[D]. 沈阳: 沈阳理工大学, 2014. Zhang Heng.Comparative Study of Fault Diagnosis Methods in TE Process[D]. Shenyang: Shenyang University of Science and Technology, 2014. [21] 薄翠梅, 韩晓春, 易辉, 等. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3): 925-930. Bo Cuimei, Han Xiaochun, Yi Hui, et al.LLE Algorithm and Fault Detection Based on Cluster Selection K-nearest Neighbor[J]. Journal of Chemical Industry and Engineering, 2016, 67(3): 925-930. |