[1] 张远绪, 程换新, 宋生建. 基于改进的RBF神经网络的滚动轴承故障诊断[J]. 工业仪表与自动化装置, 2018(6): 31-34. Zhang Yuanxu, Cheng Huanxin, Song Shengjian.Fault Diagnosis of Rolling Bearing based on Improved RBF Neural Network[J]. Industrial Instruments and Automation Equipment, 2018(6): 31-34. [2] Xing C H, Xu F T, Yao Z Y, et al.A Fault Diagnosis Method of Reciprocating Compressor based on Sensitive Feature Evaluation and Artificial Neural Network[J]. High Technology Letters (S1006-6748), 2015, 21(4): 422-428. [3] 王杉, 苑津莎, 张卫华. 基于BP神经网络的变压器故障诊断[J]. 科学技术创新, 2011(29): 40-41. Wang Shan, Yuan Jinsha, Zhang Weihua.Transformer Fault Diagnosis based on BP Neural Network[J]. Science and Technology Innovation, 2011(29): 40-41. [4] 胡杰, 刘博, 颜伏伍, 等. 汽油机失火诊断GA-SVM方法研究[J]. 汽车技术, 2017(1): 38-42. Hu Jie, Liu Bo, Yan Fuwu, et al.Study on GA-SVM Method for Engine Fire Diagnosis[J]. Automotive Technology, 2017(1): 38-42. [5] 卢向华, 舒云星. 改进AFSA算法优化SVM的变压器故障诊断[J]. 计算机工程与应用, 2017, 53(17): 173-179. Lu Xianghua, Shu Yunxing.Improved AFSA Algorithm to Optimize Transformer Fault Diagnosis based on SVM[J]. Computer Engineering and Application, 2017, 53(17): 173-179. [6] Huang J, Hu X G.Support Vector Machine with Genetic Algorithm for Machinery Fault Diagnosis of High Voltage Circuit Breaker[J]. Measurement (S0263-2241), 2011, 44(6): 1018-1027. [7] Fei S W, Zhang X B.Fault Diagnosis of Power Transformer based on Support Vector Machine with Genetic Algorithm[J]. Expert Systems with Applications (S0957-4174), 2009, 36(8): 11352-11357. [8] Yang D L, Liu Y L.Gear Fault Diagnosis based on Support Vector Machine Optimized by Artificial Bee Colony Algorithm[J]. Mechanism and Machine Theory (S0094-114X), 2015(90): 219-229. [9] 卢亚洲, 王学文, 杨兆建, 等. PSO-SVM在提升机制动系统故障诊断中的应用[J]. 机械设计与制造, 2018(6): 246-249. Lu Yazhou, Wang Xuewen, Yang Zhaojian, et al.Application of PSO-SVM in Fault Diagnosis of Lifting Mechanism Dynamic System[J]. Machinery Design and Manufacturing, 2018(6): 246-249. [10] Zhang Y Y, Wei H, Liao R J, et al.A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers[J]. Journal of Electrical Engineering and Technology (S1975-0102), 2017, 12(2): 830-839. [11] Zhang Z D, Dong F L.Fault Detection and Diagnosis for Missing Data Systems with a Three Time-slice Dynamic Bayesian Network Approach[J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 2014, 138. [12] 陈嘉宁, 杨翾, 叶承晋, 等. 基于缺失数据修复的变压器在线故障诊断方法[J]. 电力系统保护与控制, 2019, 47(15): 86-92. Chen Jianing, Yang Xuan, Ye Chengjin, et al.Transformer On-line Fault Diagnosis Method based on Missing Data Repair[J]. Power System Protection and Control, 2019, 47(15): 86-92. [13] 蒋少华, 桂卫华, 阳春华. 基于不完备数据的密闭鼓风炉故障诊断[J]. 华中科技大学学报(自然科学版), 2009, 37(增1): 122-125. Jiang Shaohua, Gui Weihua, Yang Chunhua.Fault Diagnosis of Closed Blast Furnace based on Incomplete Data[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(S1): 122-125. [14] 吴健飞, 刘勤明, 吕文元, 等. 基于灰色EM-SHSMM的缺失数据下设备健康预测研究[J]. 计算机应用研究, 2018, 35(11): 3255-3258. Wu Jianfei, Liu Qinming, Lu Wenyuan, et al.Research on Equipment Health Prediction based on Grey Em-shsmm Missing Data[J]. Computer Application Research, 2008, 35(11): 3255-3258. [15] Liu Z K, Liu Y H, Zhang D W, et al.Fault Diagnosis for a Solar Assisted Heat Pump System under Incomplete Data and Expert Knowledge[J]. Energy (S0360-5442), 2015, 87: 41-48. [16] 陈强强, 陈志平, 李春光, 等. 贝叶斯网络故障诊断的先验概率评估研究[J]. 电子机械工程, 2017, 33(2): 56-60, 64. Chen Qiangqiang, Chen Zhiping, Li Chunguang, et al.Study on Prior Probability Assessment of Bayesian Network Fault Diagnosis[J]. Electro-Mechanical Engineering, 2017, 33(2): 56-60, 64. [17] Chen D M, Yang S, Zhou F N.Transfer Learning Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling[J]. Sensors (Basel, Switzerland)(S1424-8220) 2019, 19: 1826. [18] 杨金芳, 翟永杰, 王东风, 等. 基于支持向量回归的时间序列预测[J]. 中国电机工程学报, 2005, 25(17): 110-114. Yang Jinfang, Zhai Yongjie, Wang Dongfeng, et al.Time Series Prediction based on Support Vector Regression[J]. Chinese Journal of Electrical Engineering, 2005, 25(17): 110-114. [19] 董辉, 傅鹤林, 冷伍明. 支持向量机的时间序列回归与预测[J]. 系统仿真学报, 2006, 18(7): 1785-1788. Dong Hui, Fu Helin, Leng Wuming.Time Series Regression and Prediction of Support Vector Machine[J]. Journal of System Simulation, 2006, 18(7): 1785-1788. [20] 石怀涛, 赵纪宗, 宋文丽, 等. 基于人工蜂群优化核主元分析故障检测方法[J]. 控制工程, 2018, 25(9): 1686-1691. Shi Huaitao, Zhao Jizong, Song Wenli, et al.Fault Detection Method based on Core Principal Component Analysis of Artificial Bee Colony Optimization[J]. Control Engineering, 2008, 25(9): 1686-1691. [21] 郭洋. 深度学习在时间序列模式识别中的研究与应用[D]. 北京: 北京邮电大学, 2018. Guo Yang.Research and Application of Deep Learning in Time Series Pattern Recognition[D]. Beijing: Beijing University of Posts and Telecommunications, 2018. |