Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (09): 2028-2036.doi: 10.16182/j.issn1004731x.joss.21-0294
• Modeling Theory and Methodology • Previous Articles Next Articles
Weiguo Tong(), Shichao Zeng(), Lifeng Zhang, Zhe Hou, Jiayue Guo
Received:
2021-04-06
Revised:
2021-05-12
Online:
2022-09-18
Published:
2022-09-23
Contact:
Shichao Zeng
E-mail:twg1018@163.com;zsc6052@163.com
CLC Number:
Weiguo Tong, Shichao Zeng, Lifeng Zhang, Zhe Hou, Jiayue Guo. Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network[J]. Journal of System Simulation, 2022, 34(09): 2028-2036.
[1] | 陶芳芳, 宁尚雷, 靳海波. 电阻层析成像技术在气液(固)多相流动体系中的应用进展[J]. 过程工程学报, 2020, 20(4): 371-381. |
Tao Fangfang, Ning Shanglei, Jin Haibo. Application Progress of Electrical Resistance Tomography in Gas-Liquid (Solid) Multiphase Flow Systems[J]. The Chinese Journal of Process Engineering, 2020, 20(4): 371-381. | |
[2] | 陈宇, 夏宗基, 周雨佳. 基于修正稀疏拟牛顿的电容层析成像重建算法[J]. 系统仿真学报, 2019, 31(5): 819-827. |
Chen Yu, Xia Zongji, Zhou Yujia. Electrical Capacitance Tomography Reconstruction Algorithm Based on Modified Sparse Quasi-Newton[J]. Journal of System Simulation, 2019, 31(5): 819-827. | |
[3] | 肖理庆, 王化祥. 基于聚类电阻层析成像静态图像重建算法[J]. 仪器仪表学报, 2016, 37(6): 1258-1266. |
Xiao Liqing, Wang Huaxiang. Static Image Reconstruction Algorithm Based on Clustering Electrical Resistance Tomography[J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1258-1266. | |
[4] | De Kerret F, Béguin C, Etienne S. Two-Phase Flow Pattern Identification in a Tube Bundle Based on Void Fraction and Pressure Measurements with Emphasis on Churn Flow[J]. International Journal of Multiphase Flow (S0301-9322), 2017, 94: 94-106. |
[5] | 李凯锋, 王保良, 黄志尧, 等. K-均值聚类在CCERT系统流型辨识中的应用[J]. 北京航空航天大学学报, 2017, 43(11): 2280-2285. |
Li Kaifeng, Wang Baoliang, Huang Zhiyao, et al. Application of K-means Clustering in Flow Pattern Identification of CCERT System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2280-2285. | |
[6] | 吴新杰, 黄国兴, 王静文. 压缩感知在电容层析成像流型辨识中的应用[J]. 光学精密工程, 2013, 21(4): 1062-1068. |
Wu Xinjie, Huang Guoxing, Wang Jingwen. Application of Compressed Sensing in Flow Pattern Identification of Electrical Capacitance Tomography[J]. Optics and Precision Engineering, 2013, 21(4): 1062-1068. | |
[7] | 叶明, 李晓丞, 刘凯, 等. 一种基于U2-Net模型的电阻抗成像方法[J]. 仪器仪表学报, 2021, 42(2): 235-243. |
Ye Ming, Li Xiaocheng, Liu Kai, et al. An Electrical Impedance Imaging Method Based on U2-Net Model[J].Chinese Journal of Scientific Instrument, 2021, 42(2): 235-243. | |
[8] | Li F, Tan C, Dong F. Electrical Resistance Tomography Image Reconstruction with Densely Connected Convolutional Neural Network[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2021, 70: 1-11. |
[9] | Wu Y, Chen B, Liu K, et al. Shape Reconstruction with Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method[J]. IEEE Sensors Journal (S1530-437X), 2021, 21(7): 9277-9287. |
[10] | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[C]//International Conference on Learning Representations.San Diego, CA, USA: ICLR, 2015: 1-14. |
[11] | 宋蕾, 陈德运, 姚玉梅, 等. Elman神经网络在ECT系统流型辨识中的应用[J]. 哈尔滨理工大学学报, 2014, 19(5): 103-108. |
Song Lei, Chen Deyun, Yao Yumei, et al. Application of Elman Neural Network in ECT System Flow Pattern Identification[J]. Journal of Harbin University of Science and Technology, 2014, 19(5): 103-108. | |
[12] | 李岩, 王璐, 李佳琪. 基于改进ALEXNET卷积神经网络的电容层析成像三维图像重建[J]. 哈尔滨理工大学学报, 2020, 25(4): 109-115. |
Li Yan, Wang Lu, Li Jiaqi. Three-dimensional Image Reconstruction of Electrical Capacitance Tomography Based on Improved ALEXNET Convolutional Neural Network[J]. Journal of Harbin University of Science and Technology, 2020, 25(4): 109-115. | |
[13] | 李峰, 谭超, 董峰. 全连接深度网络的电学层析成像算法[J]. 工程热物理学报, 2019, 40(7): 1526-1531. |
Li Feng, Tan Chao, Dong Feng. Electrical Tomography Algorithm Based on Fully Connected Deep Network[J].Journal of Engineering Thermophysics, 2019, 40(7): 1526-1531. | |
[14] | 肖理庆. 电阻层析成像有限元模型优化与图像重建算法研究[D]. 天津: 天津大学, 2014. |
Xiao Liqing. Research on Finite Element Model Optimization and Image Reconstruction Algorithm of Electrical Resistance Tomography[D]. Tianjin: Tianjin University, 2014. | |
[15] | 张立峰, 王化祥. 一种修正的电阻层析成像Landweber迭代算法[J]. 计量学报, 2016, 37(3): 271-274. |
Zhang Lifeng, Wang Huaxiang. A Modified Landweber Iterative Algorithm for Electrical Resistance Tomography[J]. Acta Metrology Sinica, 2016, 37(3): 271-274. | |
[16] | 徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学精密工程, 2020, 28(7): 1588-1599. |
Xu Shengjun, Ouyang Puyan, Guo Xueyuan, et al. Multiscale Feature Fusion Cavity Convolution ResNet Remote Sensing Image Building Segmentation[J]. Optics and Precision Engineering, 2020, 28(7): 1588-1599. | |
[17] | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[1] | Huimin Chai, Yong Zhang, Xinyue Li, Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning [J]. Journal of System Simulation, 2022, 34(7): 1459-1467. |
[2] | Lifeng Zhang, Huiren Wang. Image Reconstruction of Electrical Capacitance Tomography Based on Convolutional Neural Network and Finite Element Simulation [J]. Journal of System Simulation, 2022, 34(4): 712-718. |
[3] | Xu Kang, Xiaofeng Zhang. Radar Remote Sensing Data Augmentation Method Based on Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(4): 920-927. |
[4] | Rongxiu Lu, Bihao Zhang, Zhenlong Mo. Fatigue Detection Method Based on Facial Features and Head Posture [J]. Journal of System Simulation, 2022, 34(10): 2279-2292. |
[5] | Lin Shuo, An Lei, Gao Zhijun, Shan Dan, Shang Wenli. Research on Intrusion Detection Based on Stacked Autoencoder and Long-short Memory [J]. Journal of System Simulation, 2021, 33(6): 1288-1296. |
[6] | Cheng Wencong, Shi Xiaokang, Wang Zhigang. Creating Synthetic Satellite Cloud Data Based on GAN Method [J]. Journal of System Simulation, 2021, 33(6): 1297-1306. |
[7] | Tong Weiguo, Pang Xuechun, Zhu Genghong. Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network [J]. Journal of System Simulation, 2021, 33(4): 883-891. |
[8] | Dong Shuqin, Zhang Bin. Network Traffic Anomaly Detection Method for Imbalanced Data [J]. Journal of System Simulation, 2021, 33(3): 679-689. |
[9] | Wang Xiaohan, Zhang Lin, Ren Lei, Xie Kunyu, Wang Kunyu, Ye Fei, Chen Zhen. Brief Review on Applying Reinforcement Learning to Job Shop Scheduling Problems [J]. Journal of System Simulation, 2021, 33(12): 2782-2791. |
[10] | Wang Buwei, Wang Min, Fan Qian, Wang Ya'nan, zhang hanwen, Yue Yunliang. Study on Prediction of Crystal Properties Based on Deep Learning [J]. Journal of System Simulation, 2021, 33(12): 2854-2863. |
[11] | Feng Xiao, Zhang Hui, Zhou Rui, Qiao Lu, Wei Dong, Li Dandan, Zhang Yuyao, Zheng Guoqing. Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel [J]. Journal of System Simulation, 2021, 33(12): 2983-2991. |
[12] | Du Jinlian, Li Shufei, Jin Xueyun. Research on the Network of 3D Smoke Flow Super-Resolution Data Generation [J]. Journal of System Simulation, 2021, 33(10): 2381-2389. |
[13] | Liu Ruijun, Wang Xiangshang, Zhang Chen, Zhang Bohua. A Survey on Visual SLAM based on Deep Learning [J]. Journal of System Simulation, 2020, 32(7): 1244-1256. |
[14] | Yin Jingfang, Zhu Dengming, Shi Min, Wang Zhaoqi. Human Depth Maps Restoration Based on Guided GAN [J]. Journal of System Simulation, 2020, 32(7): 1312-1321. |
[15] | Ji Xiaofeng, Ge Yicheng. Holiday Highway Traffic Flow Prediction Method Based on Deep Learning [J]. Journal of System Simulation, 2020, 32(6): 1164-1171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||