[1] 沈珺, 柳伟, 李虎成, 等. 基于强化学习的多微电网分布式二次优化控制[J]. 电力系统自动化, 2020, 44(5): 198-206, 275-278. Shen Jun, Liu Wei, Li Hucheng, et al. Reinforcement Learning Based Distributed Secondary Optimal Control for Multiple Microgrids[J]. Automation of Electric Power Systems, 2020, 44(5): 198-206, 275-278. [2] 胡长斌, 王海鹏, 罗珊娜, 等. 基于鲁棒扰动观测器的直流微电网电压动态补偿控制[J]. 电力系统自动化, 2020, 44(5): 207-214, 259-261. Hu Changbin, Wang Haipeng, Luo Shanna, et al. Voltage Dynamic Compensation Control of DC Microgrid Based on Robust Disturbance Observer[J]. Automation of Electric Power Systems, 2020, 44(5): 207-214, 259-261. [3] Alegria E, Brown T, Minear E, et al.CERTS Microgrid Demonstration with Large-scale Energy Storage and Renewable Generation[J]. IEEE Trans. Smart Grid (S1949-3053), 2014, 5(2): 937-943. [4] 王岳, 杨国华, 庄家懿, 等. 基于一致性算法的微电网无差调频控制策略[J]. 中国电力, 2020, 53(10): 187-191. Wang Yue, Yang Guohua, Zhuang Jiayi, et al.Zero-Error Frequency Regulation Control Method for Microgrids Based on Consensus Algorithm[J]. Electric Power, 2020, 53(10): 187-191. [5] Lin B Q, Luan R R.Are Government Subsidies Effective in Improving Innovation Efficiency? Based on the research of China's Wind Power Industry[J]. Science of the Total Environment (S0048-9697), 2020, 710: 136339. [6] Han J, Solanki SK, Solanki J.Coordinated Predictive Control of a Wind/battery Microgrid System[J]. IEEE Emerging Sel. Topics Power Electron (S2168-6777), 2013, 1(4): 296-305. [7] Zhang Y, Yuan J, Zhao C, et al.Can Dispersed Wind Power Take off in China: A Technical & Institutional Economics Analysis[J]. Journal of Cleaner Production (S0959-6526), 2020, 256. [8] 毛安家, 马静, 蒯圣宇, 等. 高比例新能源替代常规电源后系统暂态稳定与电压稳定的演化机理[J]. 中国电机工程学报, 2020, 40(9): 2745-2755. Mao Anjia, Ma Jing, Kuai Shengyu, et al.Evolution Mechanism of Transient and Voltage Stability for Power System With High Renewable Penetration Level[J] Proceedings of the CSEE, 2020, 40(9): 2745-2755. [9] Masuta T, Yokoyama A.Supplementary Load Frequency Control by Use of a Number of Both Electric Vehicles and Heat Pump Water Heaters[J]. IEEE Trans. Smart Grid (S1949-3053), 2012, 3(3): 1253-1262. [10] 李春, 卫志农, 孙国强, 等. 考虑风力发电波动引起频率偏差的电力系统状态估计[J]. 电网技术, 2015, 39(5): 1301-1306. Li Chun, Wei Zhinong, Sun Guoqiang, et al.State Estimation of Power System Considering Frequency Deviation Caused by Fluctuation of Wind Power Generation[J]. Power System Technology, 2015, 39(5): 1301-1306. [11] 熊玮, 鄢发齐, 汪旸, 等. 实际电网频率概率分布特性演变及成因分析[J]. 电力系统自动化, 2020, 44(2): 222-227. Xiong Wei, Yan Faqi, Wang Yang, et al.Analysis on Variation of Frequency Probability Distribution and Causes in Actual Power Grid[J]. Automation of Electric Power Systems, 2020, 44(2): 222-227. [12] 邓银秋, 汪震, 韩俊飞, 等. 适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J]. 中国电机工程学报, 2020, 40(8): 2406-2415. Deng Yinqiu, Wang Zhen, Han Junfei, et al.Control Strategy on Optimal Redistribution of Unbalanced Power for Offshore Wind Farms Integrated VSC-MTDC[J] Proceedings of the CSEE, 2020, 40(8): 2406-2415. [13] 张道田, 杨文思, 张扬, 等. 影响风电一次调频能力的参数选取[J]. 江西电力, 2019, 43(12): 56-60, 66. Zhang Daotian, Yang Wensi, Zhang Yang, et al Selection of Parameters Affecting Primary Frequency Regulation Capability of Wind Power[J] Jiangxi Electric Power, 2019, 43(12): 56-60, 66. [14] 王岳, 杨国华, 庄家懿, 等. 基于一致性算法的微电网无差调频控制策略[J]. 中国电力, 2020, 53(10): 187-191. Wang Yue, Yang Guohua, Zhuang Jiayi, et al.Zero-Error Frequency Regulation Control Method for Microgrids Based on Consensus Algorithm[J]. Electric Power, 2020, 53(10): 187-191. [15] 许瑞庆. 高风电渗透率下双馈风机参与系统调频的控制策略研究[D]. 北京: 华北电力大学, 2017. Xu Ruiqing.Research on Control Strategy of DFIG Participating in System Frequency Regulation Under High Wind Power Penetration[D]. Beijing: North China Electric Power University, 2017. [16] 刘柳, 王德林, 杨仁杰, 等. 基于桨距角控制的双馈风机参与电网二次调频控制策略研究[J]. 电工电能新技术, 2020, 39(5): 10-16. Liu Liu, Wang Delin, Yang Renjie, et al.Research on Control Strategy of DFIG Participating in Secondary Frequency Regulation Based on Pitch[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(5): 10-16. [17] 刘其辉, 逯胜建. 参与微电网调频的电动汽车虚拟同步机充放电控制策略[J]. 电力系统自动化, 2018, 42(9): 171-179. Liu Qihui, Lu Shengjian.Charging and Discharging Control Strategy Based on Virtual Synchronous Machine for Electrical Vehicle[J]. Automation of Electric Power Systems, 2018, 42(9): 171-179. |