Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (09): 2028-2036.doi: 10.16182/j.issn1004731x.joss.21-0294
• Modeling Theory and Methodology • Previous Articles Next Articles
Weiguo Tong(
), Shichao Zeng(
), Lifeng Zhang, Zhe Hou, Jiayue Guo
Received:2021-04-06
Revised:2021-05-12
Online:2022-09-18
Published:2022-09-23
Contact:
Shichao Zeng
E-mail:twg1018@163.com;zsc6052@163.com
CLC Number:
Weiguo Tong, Shichao Zeng, Lifeng Zhang, Zhe Hou, Jiayue Guo. Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network[J]. Journal of System Simulation, 2022, 34(09): 2028-2036.
| [1] | 陶芳芳, 宁尚雷, 靳海波. 电阻层析成像技术在气液(固)多相流动体系中的应用进展[J]. 过程工程学报, 2020, 20(4): 371-381. |
| Tao Fangfang, Ning Shanglei, Jin Haibo. Application Progress of Electrical Resistance Tomography in Gas-Liquid (Solid) Multiphase Flow Systems[J]. The Chinese Journal of Process Engineering, 2020, 20(4): 371-381. | |
| [2] | 陈宇, 夏宗基, 周雨佳. 基于修正稀疏拟牛顿的电容层析成像重建算法[J]. 系统仿真学报, 2019, 31(5): 819-827. |
| Chen Yu, Xia Zongji, Zhou Yujia. Electrical Capacitance Tomography Reconstruction Algorithm Based on Modified Sparse Quasi-Newton[J]. Journal of System Simulation, 2019, 31(5): 819-827. | |
| [3] | 肖理庆, 王化祥. 基于聚类电阻层析成像静态图像重建算法[J]. 仪器仪表学报, 2016, 37(6): 1258-1266. |
| Xiao Liqing, Wang Huaxiang. Static Image Reconstruction Algorithm Based on Clustering Electrical Resistance Tomography[J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1258-1266. | |
| [4] | De Kerret F, Béguin C, Etienne S. Two-Phase Flow Pattern Identification in a Tube Bundle Based on Void Fraction and Pressure Measurements with Emphasis on Churn Flow[J]. International Journal of Multiphase Flow (S0301-9322), 2017, 94: 94-106. |
| [5] | 李凯锋, 王保良, 黄志尧, 等. K-均值聚类在CCERT系统流型辨识中的应用[J]. 北京航空航天大学学报, 2017, 43(11): 2280-2285. |
| Li Kaifeng, Wang Baoliang, Huang Zhiyao, et al. Application of K-means Clustering in Flow Pattern Identification of CCERT System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2280-2285. | |
| [6] | 吴新杰, 黄国兴, 王静文. 压缩感知在电容层析成像流型辨识中的应用[J]. 光学精密工程, 2013, 21(4): 1062-1068. |
| Wu Xinjie, Huang Guoxing, Wang Jingwen. Application of Compressed Sensing in Flow Pattern Identification of Electrical Capacitance Tomography[J]. Optics and Precision Engineering, 2013, 21(4): 1062-1068. | |
| [7] | 叶明, 李晓丞, 刘凯, 等. 一种基于U2-Net模型的电阻抗成像方法[J]. 仪器仪表学报, 2021, 42(2): 235-243. |
| Ye Ming, Li Xiaocheng, Liu Kai, et al. An Electrical Impedance Imaging Method Based on U2-Net Model[J].Chinese Journal of Scientific Instrument, 2021, 42(2): 235-243. | |
| [8] | Li F, Tan C, Dong F. Electrical Resistance Tomography Image Reconstruction with Densely Connected Convolutional Neural Network[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2021, 70: 1-11. |
| [9] | Wu Y, Chen B, Liu K, et al. Shape Reconstruction with Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method[J]. IEEE Sensors Journal (S1530-437X), 2021, 21(7): 9277-9287. |
| [10] | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[C]//International Conference on Learning Representations.San Diego, CA, USA: ICLR, 2015: 1-14. |
| [11] | 宋蕾, 陈德运, 姚玉梅, 等. Elman神经网络在ECT系统流型辨识中的应用[J]. 哈尔滨理工大学学报, 2014, 19(5): 103-108. |
| Song Lei, Chen Deyun, Yao Yumei, et al. Application of Elman Neural Network in ECT System Flow Pattern Identification[J]. Journal of Harbin University of Science and Technology, 2014, 19(5): 103-108. | |
| [12] | 李岩, 王璐, 李佳琪. 基于改进ALEXNET卷积神经网络的电容层析成像三维图像重建[J]. 哈尔滨理工大学学报, 2020, 25(4): 109-115. |
| Li Yan, Wang Lu, Li Jiaqi. Three-dimensional Image Reconstruction of Electrical Capacitance Tomography Based on Improved ALEXNET Convolutional Neural Network[J]. Journal of Harbin University of Science and Technology, 2020, 25(4): 109-115. | |
| [13] | 李峰, 谭超, 董峰. 全连接深度网络的电学层析成像算法[J]. 工程热物理学报, 2019, 40(7): 1526-1531. |
| Li Feng, Tan Chao, Dong Feng. Electrical Tomography Algorithm Based on Fully Connected Deep Network[J].Journal of Engineering Thermophysics, 2019, 40(7): 1526-1531. | |
| [14] | 肖理庆. 电阻层析成像有限元模型优化与图像重建算法研究[D]. 天津: 天津大学, 2014. |
| Xiao Liqing. Research on Finite Element Model Optimization and Image Reconstruction Algorithm of Electrical Resistance Tomography[D]. Tianjin: Tianjin University, 2014. | |
| [15] | 张立峰, 王化祥. 一种修正的电阻层析成像Landweber迭代算法[J]. 计量学报, 2016, 37(3): 271-274. |
| Zhang Lifeng, Wang Huaxiang. A Modified Landweber Iterative Algorithm for Electrical Resistance Tomography[J]. Acta Metrology Sinica, 2016, 37(3): 271-274. | |
| [16] | 徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学精密工程, 2020, 28(7): 1588-1599. |
| Xu Shengjun, Ouyang Puyan, Guo Xueyuan, et al. Multiscale Feature Fusion Cavity Convolution ResNet Remote Sensing Image Building Segmentation[J]. Optics and Precision Engineering, 2020, 28(7): 1588-1599. | |
| [17] | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778. |
| [1] | Wang Bingheng, Liu Tingrui, Yang Fan, Zhang Huan, Li Wei, Ma Ping, Yang Ming. Research on Requirements and Methods for Intelligent Assessment of Simulation Credibility [J]. Journal of System Simulation, 2025, 37(7): 1710-1722. |
| [2] | Chen Kun, Chen Liang, Xie Jiming, Liu Fengbo, Chen Taixiong, Wei Lukuan. Simulation Study on Adaptive Signal Control of Deformed Intersection Based on LSTM-GNN [J]. Journal of System Simulation, 2025, 37(6): 1343-1351. |
| [3] | Wu Jiangjiang, Li Zhenghong, Sha Zhichao, Chen Hao, Peng Shuang, Du Chun, Li Jun. A Method for Road Extraction Using Masked Image Modeling and Contrastive Learning [J]. Journal of System Simulation, 2025, 37(4): 922-932. |
| [4] | Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning [J]. Journal of System Simulation, 2025, 37(3): 791-802. |
| [5] | Wang Xiao, Li Xiangyang, Liang Feng, Zhang Zhili. Research on Infrared and Visible Light Fusion Method Based on ResNet-50 and Laplacian Filtering [J]. Journal of System Simulation, 2025, 37(12): 3202-3211. |
| [6] | Hu yang, Li Zihao, Fu Deyi, Song Ziqiu, Fang Fang, Liu Jizhen. Deep Learning Modeling of Multi-scale Characteristics of Large-scale Wind Turbine Gearbox [J]. Journal of System Simulation, 2025, 37(10): 2454-2468. |
| [7] | Gu Hao, Wang Jiayu, Xiong Weili. Soft Sensor Modeling Based on Improved Transformer in Dual-stream Framework [J]. Journal of System Simulation, 2025, 37(10): 2594-2604. |
| [8] | Guo Yecai, Tong Shuang. A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification [J]. Journal of System Simulation, 2024, 36(9): 2065-2074. |
| [9] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
| [10] | Wei Jinyang, Wang Keping, Yang Yi, Fei Shumin. Incremental Image Dehazing Algorithm Based on Multiple Transfer Attention [J]. Journal of System Simulation, 2024, 36(4): 969-980. |
| [11] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
| [12] | Li Chen, He Ming, Dong Chen, Li Wei. Action Recognition Model of Directed Attention Based on Cosine Similarity [J]. Journal of System Simulation, 2024, 36(1): 67-82. |
| [13] | Zhang Fengquan, Cao Duo, Ma Xiaohan, Chen Baijun, Zhang Jiangxiao. Style Transfer Network for Generating Opera Makeup Details [J]. Journal of System Simulation, 2023, 35(9): 2064-2076. |
| [14] | Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network [J]. Journal of System Simulation, 2023, 35(2): 308-317. |
| [15] | Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section [J]. Journal of System Simulation, 2023, 35(1): 146-157. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||