[1] 方立军, 刘玉东, 胡月龙. 基于复杂度的双接触式气液两相流流型识别研究[J]. 动力工程学报, 2017, 37(3): 218-223. Fang Lijun, Liu Yudong, Hu Yuelong.Identification of Gas-Liquid Two-phase Flow Patterns in a Double-contact Absorber Based on Complexity Theory[J]. Journal of Power Engineering, 2017, 37(3): 218-223. [2] 王莉莉, 刘洪波, 陈德运, 等. 自适应与附加动量BP神经网络的ECT流型辨识[J]. 哈尔滨理工大学学报, 2018, 23(1): 105-110. Wang Lili, Liu Hongbo, Chen Deyun, et al.Identification of Flow Regimes Based on Adaptive Learning and Additional Momentum BP Neural Network for Electrical Capacitance Tomography[J]. Journal of Harbin University of Science and Technology, 2018, 23(1): 105-110. [3] Li X N, Liu M Y, Ma Y L.Experiments and Meso-scale Modeling of Phase Holdups and Bubble Behavior in Gas-liquid-solid Mini-fluidized Beds[J]. Chemical Engineering Science (S0009-2509), 2018, 192: 725-738. [4] 陈露阳, 尹佳雯, 孙志强, 等. 基于EEMD-Hilbert谱的气液两相流钝体绕流流型识别[J]. 仪器仪表学报, 2017, 38(10): 2536-2546. Chen Luyang, Yin Jiawen, Sun Zhiqiang, et al.Flow Regime Identification of Gas-liquid Two-phase Flow with Flow Around Bluff-body Based on Based on EEMD-Hilbert Spectrum[J]. Chinese Journal of Instrumentation, 2017, 38(10): 2536-2546. [5] 何永勃, 董玉珊, 薛荣荣. 基于交互式递归分析的两相流流型识别方法[J]. 系统仿真学报, 2019, 31(4): 720-726. He Yongbo, Dong Yushan, Xue Rongrong.Recognition Method on Two-phase Flow Regime Based on Cross Recursive Analysis[J]. Journal of System Simulation, 2019, 31(4): 720-726. [6] 翁润滢, 孙斌, 赵玉晓, 等. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065-5072. Weng Runying, Sun Bin, Zhao Yuxiao, et al.Identification of Gas-liquid Two-phase Flow Pattern Based on Adaptive Optimal Ker-nel and Convolutional Neural Network[J]. CIESC Journal, 2018, 69(12): 5065-5072. [7] 高强, 孟格格. 基于卷积神经网络的绝缘子故障识别算法研究[J]. 电测与仪表, 2017, 54(21): 30-36. Gao Qiang, Meng Gege.Research of a Faulted Insulator Identification Algorithm Based on Convolution Neural Network[J]. Electrical Measurement & Instrumentation, 2017, 54(21): 30-36. [8] Szegedy C, Liu W, Jia Y, et al.Going Deeper With Convolutions[J]. IEEE Computer Society(S1063-6919), 2014. [9] 张建国, 马福昌, 窦银科. 层析成像在冰水两相流参数测量中的应用[J]. 光学精密工程, 2013, 21(8): 1981-1987. Zhang Jianguo, Ma Fuchang, Dou Yinke.Application of Electrical Resistance Tomography to Ice-water Two-phase Flow Parameter Measurement[J]. Optics and Precision Engineering, 2013, 21(8): 1981-1987. [10] 谭超. 基于多传感器融合的两相流参数测量方法[D]. 天津: 天津大学, 2010. Tan Chao.Multisensor Fusion Based Measurement on Two-Phase Flow Parameters[D]. Tianjin: Tianjin University, 2010. [11] 张立峰, 王化祥. 一种修正的电阻层析成像Landweber迭代算法[J]. 计量学报, 2016, 37(3): 271-274. Zhang Lifeng, Wang Huaxiang.A Modified Landformer Algorithm for Electrical Resistance Tomography[J]. Acta Metrologica Sinica, 2016, 37(3): 271-274. [12] Simonyan K, Zisserman A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science (S2333-9721), 2014. [13] 王枫, 刘青山. 基于双卷积神经网络的行人精细化识别[J]. 中国科技论文, 2017, 12(14) : 1578-1582. Wang Feng, Liu Qingshan.Fine Pedestrians Recognition Based on Double Convolutional Neural Network[J]. Chinese Journal of Scientific and Technical Papers, 2017, 12(14): 1578-1582. [14] Lev G, Sadeh G, Klein B, et al.RNN Fisher Vectors for Action Recognition and Image Annotation[J]. Computer Science (S2333-9721), 2016. [15] 张天琦. 基于深度学习的行人流量统计算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. Zhang Tianqi.Research on Pedestrian Flow Statistics Algorithm Based on Deep Learning[D]. Harbin: Harbin Institute of Technology, 2017. |