Journal of System Simulation ›› 2020, Vol. 32 ›› Issue (7): 1244-1256.doi: 10.16182/j.issn1004731x.joss.19-VR0466
Previous Articles Next Articles
Liu Ruijun*, Wang Xiangshang, Zhang Chen, Zhang Bohua
Received:2019-08-30
Revised:2019-12-01
Online:2020-07-25
Published:2020-07-15
CLC Number:
Liu Ruijun, Wang Xiangshang, Zhang Chen, Zhang Bohua. A Survey on Visual SLAM based on Deep Learning[J]. Journal of System Simulation, 2020, 32(7): 1244-1256.
| [1] | Cadena C, Carlone L, Carrillo H, et al.Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[J]. IEEE Transactions on Robotics (S1552-3098), 2016, 32(6): 1309-1332. |
| [2] | Fuentes-Pacheco J, Ruiz-Ascencio J, Rendón-Mancha J M, et al. Visual simultaneous localization and mapping: A survey[J]. Artificial Intelligence Review (S0269-2821), 2015, 43(1): 55-81. |
| [3] | 刘浩敏, 章国峰, 鲍虎军. 基于单目视觉的同时定位与地图构建方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6): 855-868.Liu Haomin, Zhang Guofeng, Bao Hujun.A survey of monocular simiultaneous localization and mapping[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 855-868. |
| [4] | Geiger A, Lenz P, Urtasun R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2012: 3354-3361. |
| [5] | Kummerle R, Grisetti G, Strasdat H, et al.g2o: A general framework for graph optimization[C]// IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2011: 3607-3613. |
| [6] | Belter D, Skrzypczyński P.Precise self-localization of a walking robot on rough terrain using ptam[M]. Baltimore, USA: Adaptive Mobile Robotics, 2012: 89-96. |
| [7] | Mur-artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics (S1552-3098), 2017, 23(5): 1255-1262. |
| [8] | Engel J, Koltunk V, Cremers D.Direct sparse odometry[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence (S0162-8828), 2018, 40(3): 611-625. |
| [9] | He K, Zhang X, Ren S, et al.Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. LAS VEGAS: IEEE, 2016: 779-788. |
| [10] | Ren S, He K, Girshick R B, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2017, 39(6): 1137-1149. |
| [11] | Donahue J, Anne Hendricks L, Guadarrama S, et al.Long-term recurrent convolutional networks for visual recognition and description[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3128-3137. |
| [12] | Sünderhauf N, Pham T T, Latif Y, et al.Meaningful maps with object-oriented semantic mapping[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017: 5079-5085. |
| [13] | Zhou Y, Li H, Kneip L.Canny-vo: Visual odometry with rgb-d cameras based on geometric 3-d-2-d edge alignment[J]. IEEE Transactions on Robotics (S1552-3098), 2018, 35(1): 184-199. |
| [14] | Costante G, Mancini M, Valigi P, et al.Exploring representation learning with CNNs for frame-to-frame ego-motion estimation[J]. IEEE Robotics and Automation Letters (S2377-3766), 2016, 1(1): 18-25. |
| [15] | Shahid M, Naseer T, Burgard W.DTLC: Deeply trained loop closure detections for lifelong visual SLAM[C]// Proceedings, Workshop on Visual Place Recognition, Conference on Robotics: Science and Systems (RSS). Ann Arbor, USA: RSS, 2016: 1-8. |
| [16] | Hou Y, Zhang H, Zhou S L.Convolutional neural networkbased image representation for visual loop closure detection[C]// IEEE International Conference on Information and Automation. Piscataway, USA: IEEE, 2015: 2238-2245. |
| [17] | Daniel D, Malisiewicz T, Rabinovich A. Toward geometric deep SLAM[EB/OL]. (2017-07-24) [2019-08-20], https://arxiv.org /pdf/1707.07410.pdf. |
| [18] | Sharif Razavian A, Azizpour H, Sullivan J, et al.CNN features off-the-shelf: an astounding baseline for recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Columbus, Ohio: IEEE, 2014: 806-813. |
| [19] | Wang S, Clark R, Wen H, et al.Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural networks[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 2043-2050. |
| [20] | Donahue J, Anne Hendricks L, Guadarrama S, et al.Long-term recurrent convolutional networks for visual recognition and description[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 2625-2634. |
| [21] | Elman J L.Finding structure in time[J]. Cognitive science (S0364-0213), 1990, 14(2): 179-211. |
| [22] | Graves A.Supervised Sequence Labeling with Recurrent Neural Networks[M]. Heidelberg: Springer, 2012: 5-13. |
| [23] | Chen Z, Jacobson A, Sünderhauf N, et al.Deep learning features at scale for visual place recognition[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 3223-3230. |
| [24] | Sünderhauf N, Dayoub F, Shirazi S, et al.On the Performance of ConvNet Features for Place Recognition[C]// International Conference on Intelligent Robots and Systems (IROS). Hamburg: IEEE, 2015: 4297-4304. |
| [25] | Yi H, Hong Z, Zhou S.BoCNF: efficient image matching with Bag of ConvNet features for scalable and robust visual place recognition[J]. Autonomous Robots (S0929-5593), 2017, 42(9): 1-17. |
| [26] | Lin K, Yang H F, Hsiao J H, et al.Deep learning of binary hash codes for fast image retrieval[C]// Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Boston, USA: IEEE, 2015: 27-35. |
| [27] | Sünderhauf N, Shirazi S, Jacobson A, et al.Place recognition with convnet landmarks: Viewpoint-robust, condition-robust, training-free[C]// Proceedings of Robotics: Science and Systems XI. Michigan, USA: RSS, 2015: 1-10. |
| [28] | Parisotto E, Singh Chaplot D, Zhang J, et al.Global pose estimation with an attention-based recurrent network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 237-246. |
| [29] | Hwang J, Park S, Kwak N.Athlete pose estimation by a global-local network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, Hawaii: IEEE, 2017: 58-65. |
| [30] | Southall C, Stables R, Hockman J.Automatic Drum Transcription for Polyphonic Recordings Using Soft Attention Mechanisms and Convolutional Neural Networks[C]// The 18th International Society for Music Information Retrieval Conference. Suzhou: ISMIR, 2017: 606-612. |
| [31] | Sünderhauf N, Pham T T, Latif Y, et al.Meaningful Maps with Object-Oriented Semantic Mapping[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2017: 5079-5085. |
| [32] | Ng P C, Henikoff S.SIFT: Predicting amino acid changes that affect protein function[J]. Nucleic Acids Research (S0305-1048), 2003, 31(13): 3812-3814. |
| [33] | Lei H, Akhtar N, Mian A.Octree guided CNN with Spherical Kernels for 3D Point Clouds[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 9631-9640. |
| [34] | Mani I, Zhang I.KNN approach to unbalanced data distributions: a case study involving information extraction[C]// Proceedings of workshop on learning from imbalanced datasets. Washington: ICML, 2003: 126. |
| [35] | Radwan N, Valada A, Burgard W.VLocNet++: Deep Multitask Learning for Semantic Visual Localization and Odometry[J]. IEEE Robotics and Automation Letters (S2377-3766), 2018, 3(4): 4407-4414. |
| [36] | Girisha S, Manohara P, Ujjwal V, et al.Semantic Segmentation of UAV Aerial Videos using Convolutional Neural Networks[C]// 2019 IEEE Knowledge Engineering (AIKE). Sardinia, Italy: IEEE, 2019: 21-27. |
| [37] | Han Y, Ye J C.Framing U-Net via deep convolutional framelets: Application to sparse-view CT[J]. IEEE Transactions on Medical Imaging (S0278-0062), 2018, 37(6): 1418-1429. |
| [38] | Bowman S L, Atanasov N, Daniilidis K, et al.Probabilistic data association for semantic slam[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 1722-1729. |
| [39] | Jordan M I, Jacobs R A.Hierarchical Mixtures of Experts and the EM Algorithm[J]. Neural Computation (S0899-7667), 1994, 6(2): 181-214. |
| [40] | Engel J, Koltun V, Cremers D.Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2017, 40(3): 611-625. |
| [41] | Geiger A, Ziegler J, Stiller C.Stereoscan: Dense 3d reconstruction in real-time[C]// 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden, Germany: IEEE, 2011: 963-968. |
| [42] | Loo S Y, Amiri A J, Mashohor S, et al.CNN-SVO: Improving the mapping in semi-direct visual odometry using single-image depth prediction[C]// 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019: 5218-5223. |
| [43] | Zhan H, Weerasekera C S, Bian J, et al. Visual Odometry Revisited: What Should Be Learnt?[EB/OL]. (2019/09/21) [2019/10/05], https://arxiv.org/abs/1909.09803.pdf. |
| [44] | Zhou T, Brown M, Snavely N, et al.Unsupervised learning of depth and ego-motion from video[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii: IEEE , 2017: 1851-1858. |
| [45] | Cieslewski T, Choudhary S, Scaramuzza D.Data-efficient decentralized visual SLAM[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Prague, Czech Republic,: IEEE, 2018: 2466-2473. |
| [46] | Li S, Zhi Y, Anestis Z, et al.Recurrent-OctoMap: Learning State-based Map Refinement for Long-Term Semantic Mapping with 3D-Lidar Data[J]. IEEE Robotics and Automation Letters (S2377-3766), 2018, 3(4): 3749-3756. |
| [47] | Hornung A, Kai M W, Bennewitz M, et al.OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots (S0929-5593), 2013, 34(3): 189-206. |
| [48] | Zhang J, Singh S.Laser-visual-inertial odometry and mapping with high robustness and low drift[J]. Journal of Field Robotics (S1556-4967), 2018, 35(8): 1242-1264. |
| [49] | Garcia-Fidalgo E, Ortiz A.Vision-based topological mapping and localization methods: a survey[J]. Robotics and Autonomous Systems (S0921-8890), 2015, 64: 1-20. |
| [50] | Engel J, Schöps T, Cremers D.LSD-SLAM: Large-Scale Direct Monocular SLAM[M]. Munich: Computer Vision - ECCV 2014. 2014: 834-849. |
| [51] | Scherer S A, Zell A.Efficient onbard RGBD-SLAM for autonomous MAVs[C]// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 1062-1068. |
| [52] | Vijayanarasimhan S, Ricco S, Schmid C, et al. Sfm-net: Learning of structure and motion from video[EB/OL]. (2017/04/25) [2019/08/25], https://arxiv.org/abs/ 1704.07804.pdf. |
| [53] | 张峻宁, 苏群星, 刘鹏远, 等. 一种自适应特征地图匹配的改进VSLAM算法[J]. 自动化学报, 2019, 45(3): 553-565.Zhang Junning, Su Qunxing, Liu Pengyuan, et al.An Improved VSLAM Algorithm Based on Adaptive Feature Map[J]. Acta Automatica Sinica, 2019, 45(3): 553-565. |
| [54] | Grisetti G, Kümmerle R, Strasdat H, et al.g2o: A general framework for (hyper) graph optimization[C]// 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China: IEEE, 2011: 3607-3613. |
| [1] | Wang Bingheng, Liu Tingrui, Yang Fan, Zhang Huan, Li Wei, Ma Ping, Yang Ming. Research on Requirements and Methods for Intelligent Assessment of Simulation Credibility [J]. Journal of System Simulation, 2025, 37(7): 1710-1722. |
| [2] | Chen Kun, Chen Liang, Xie Jiming, Liu Fengbo, Chen Taixiong, Wei Lukuan. Simulation Study on Adaptive Signal Control of Deformed Intersection Based on LSTM-GNN [J]. Journal of System Simulation, 2025, 37(6): 1343-1351. |
| [3] | Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning [J]. Journal of System Simulation, 2025, 37(3): 791-802. |
| [4] | Wang Xiao, Li Xiangyang, Liang Feng, Zhang Zhili. Research on Infrared and Visible Light Fusion Method Based on ResNet-50 and Laplacian Filtering [J]. Journal of System Simulation, 2025, 37(12): 3202-3211. |
| [5] | Hu yang, Li Zihao, Fu Deyi, Song Ziqiu, Fang Fang, Liu Jizhen. Deep Learning Modeling of Multi-scale Characteristics of Large-scale Wind Turbine Gearbox [J]. Journal of System Simulation, 2025, 37(10): 2454-2468. |
| [6] | Gu Hao, Wang Jiayu, Xiong Weili. Soft Sensor Modeling Based on Improved Transformer in Dual-stream Framework [J]. Journal of System Simulation, 2025, 37(10): 2594-2604. |
| [7] | Guo Yecai, Tong Shuang. A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification [J]. Journal of System Simulation, 2024, 36(9): 2065-2074. |
| [8] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
| [9] | Wei Jinyang, Wang Keping, Yang Yi, Fei Shumin. Incremental Image Dehazing Algorithm Based on Multiple Transfer Attention [J]. Journal of System Simulation, 2024, 36(4): 969-980. |
| [10] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
| [11] | Li Chen, He Ming, Dong Chen, Li Wei. Action Recognition Model of Directed Attention Based on Cosine Similarity [J]. Journal of System Simulation, 2024, 36(1): 67-82. |
| [12] | Zhang Fengquan, Cao Duo, Ma Xiaohan, Chen Baijun, Zhang Jiangxiao. Style Transfer Network for Generating Opera Makeup Details [J]. Journal of System Simulation, 2023, 35(9): 2064-2076. |
| [13] | Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section [J]. Journal of System Simulation, 2023, 35(1): 146-157. |
| [14] | Dayong Zhang, Jingyu Yang, Xi Wu. Research on Intelligent Prediction Method of Wargaming Air Mission [J]. Journal of System Simulation, 2023, 35(1): 212-220. |
| [15] | Huimin Chai, Yong Zhang, Xinyue Li, Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning [J]. Journal of System Simulation, 2022, 34(7): 1459-1467. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||