[1] Dong C, Loy C C, He K, et al.Learning a Deep Convolutional Network for Image Super-Resolution[C]// European Conference on Computer Vision. Cham: Springer, 2014: 184-199. [2] Dong C, Loy C C, Tang X.Accelerating the Super-resolution Convolutional Neural Network[C]// European Conference on Computer Vision. Cham: Springer, 2016: 391-407. [3] Shi W, Caballero J, Huszár F, et al.Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// /IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2016: 1874-1883. [4] Kim J, Lee J K, Lee K M.Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2016: 1646-1654. [5] Kim J, Lee J K, Lee K M.Deeply-Recursive Convolutional Network for Image Super-Resolution[C]// IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2016: 1637-1645. [6] Ledig C, Theis L, Huszar F, et al.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA: IEEE, 2017: 105-114. [7] Lim B, Son S, Kim H, et al.Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC, USA: IEEE, 2017: 136-144. [8] Chu M, Thuerey N.Data-Driven Synthesis of Smoke Flows with CNN-Based Feature Descriptors[J]. ACM Transactions on Graphics (TOG)(S0730-0301), 2017, 36(4): 1-14. [9] Xie Y, Franz E, Chu M, et al.tempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow[J]. ACM Transactions on Graphics (TOG)(S0730-0301), 2018, 37(4): 1-15. [10] 杨涛, 胡事民. 基于深度神经网络的二维流体模拟[J]. 中国科技论文, 2019, 14(3): 243-249. Yang Tao, Hu Shimin.Two-Dimensional Fluid Simulation Based on Deep Neural Network[J]. China Sciencepaper, 2019, 14(3): 243-249. [11] Gulrajani I, Ahmed F, Arjovsky M, et al.Improved Training of Wasserstein GANs[C]// Advances in Neural Information Processing Systems. Cambridge MA: MIT Press, 2017: 5767-5777. [12] 杜青青. 室内烟雾扩散模拟技术研究与实现[D]. 北京: 北京工业大学, 2018. Du Qingqing.Research and Implementation of Indoor Smoke Diffusion Simulation Technology[D]. Beijing: Beijing University of Technology, 2018. |