[1] Yue Y, Wang B, Miao N, et al.Tuning the Magnetic Properties of Zr2N MXene by Biaxial Strain[J]. Ceramics International (S0272-8842), 2021, 47(2): 2367-2373. [2] Si C, Zhou J, Sun Z.Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal-Insulator Transition in Graphene-Like Two-Dimensional Cr2C Crystals[J]. ACS Applied Materials & Interfaces (S1944-8244), 2015, 7(31): 17510-17515. [3] He M, Zhang L.Machine Learning and Symbolic Regression Investigation on Stability of MXene Materials[J]. Computational Materials Science (S0927-0256), 2021, 196: 110578. [4] Lu S, Zhou Q, Ouyang Y, et al.Accelerated Discovery of Stable Lead-Free Hybrid Organic-Inorganic Perovskites Via Machine Learning[J]. Nature Communications (S2041-1723), 2018, 9(1): 3405. [5] Tao Q, Lu T, Sheng Y, et al.Machine Learning Aided Design of Perovskite Oxide Materials for Photocatalytic Water Splitting[J]. Journal of Energy Chemistry (S2095-4956), 2021, 60: 351-359. [6] Xue D, Balachandran P V, Hogden J, et al.Accelerated Search for Materials with Targeted Properties by Adaptive Design[J]. Nature Communications (S2041-1723), 2016, 7(1): 11241. [7] Isayev O, Oses C, Toher C, et al.Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals[J]. Nature Communications (S2041-1723), 2017, 8(1): 15679. [8] Seko A, Togo A, Hayashi H, et al.Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization[J]. Physical Review Letters (S0031-9007), 2015, 115(20): 205901. [9] Jha D, Ward L, Paul A, et al.ElemNet: Deep Learning the Chemistry of Materials from Only Elemental Composition[J]. Scientific Reports (S2045-2322), 2018, 8(1): 17593. [10] Goodall R E A, Lee A A. Predicting Materials Properties Without Crystal Structure: Deep Representation Learning from Stoichiometry[J]. Nature Communications (S2041-1723), 2020, 11(1): 6280. [11] Wang A Y-T a K, Steven K, Murdock Ryan J, et al. Compositionally Restricted Attention-based Network for Materials Property Predictions[J]. Npj Computational Materials (S2057-3960), 2020, 7(1): 77. [12] Xie T, Grossman J C.Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties[J]. Physical Review Letters (S0031-9007), 2018, 120(14): 145301. [13] Kaiming He X Z, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, N.J.: IEEE, 2016: 770-778. [14] Jain A, Ong S P, Hautier G, et al.A Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation[J]. APL Materials (S2166-532X), 2013, 1(1): 011002. [15] Ward L, Agrawal A, Choudhary A, et al.A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials[J]. Npj Computational Materials (S2057-3960), 2016, 2(1): 16028. [16] Gilmer J, Schoenholz S S, Riley P F, et al.Neural Message Passing for Quantum Chemistry[C]// 34th International Conference on Machine Learning. New York: ACM, 2017: 1263-1272. [17] Tshitoyan V, Dagdelen J, Weston L, et al.Unsupervised Word Embeddings Capture Latent Knowledge from Materials Science Literature[J]. Nature (S0028-0836), 2019, 571(7763): 95-98. [18] Tan Z, Wang M, Xie J, et al.Deep Semantic Role Labeling with Self-Attention[C]// 32th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2018: 4929-4936. [19] Marcheggiani D, Titov I.Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling[C]// 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1506-1515. [20] Szegedy I, Christian S.Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]// 32nd International Conference on Machine Learning. New York: ACM, 2015: 448-456. [21] Bottou L, Curtis F E, Nocedal J.Optimization Methods for Large-Scale Machine Learning[J]. SIAM Review (S0036-1445), 2018, 60(2): 223-311. [22] Saal J E, Kirklin S, Aykol M, et al.Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)[J]. JOM (S1047-4838), 2013, 65(11): 1501-1509. [23] Kirklin S, Saal J E, Meredig B, et al.The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies[J]. npj Computational Materials (S2057-3960), 2015, 1(1): 864-871. [24] Yue Y, Zhu H, Liu X, et al.First-Principles Study on Non-Radiative Carrier Captures of Point Defects Associated with Proton Generation in Silica[J]. AIP Advances (S2158-3226), 2021, 11(1): 15214. [25] Yue Y, Li P, Song Y, et al.Dissociation Characteristics of Proton Release in a-SiO2 by First-Principles Theory[J]. Journal of Non-Crystalline Solids (S0022-3093), 2018, 486: 1-8. |