[1] 潘如媛. 深度强化学习求解作业调度问题方法研究[D]. 北京: 北京交通大学, 2020. Pan Ruyuan.Research on Deep Reinforcement Learning Methods for Solving Flowshop Scheduling Problem[D]. Beijing: Beijing Jiaotong University, 2020. [2] Zhang C, Song W, Cao Z, et al.Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning[C]// Advances in Neural Information Processing Systems (NeurIPS). 2020. arXiv preprint arXiv: 2010.12367, 2020. [3] Gianfrancesco M A, Tamang S, Yazdany J, et al.Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data[J]. JAMA Internal Medicine (S2168-6106), 2018, 178(11): 1544-1547. [4] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with Deep Reinforcement Learning[J]. Computer Science.2013. arXiv preprint arXiv: 1312.5602, 2013. [5] 李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J/OL].自动化学报. (2020-12-09) [2021-05-31]. https://doi.org/10.16383/j.aas.c200551. Li Kaiwen, Zhang Tao, Wang Rui, et al. Research Reviews of Combinatorial Optimization Methods Based on Deep Reinforcement Learning[J/OL]. Acta Automatica Sinica. (2020-12-09) [2021-05-31]. https://doi.org/10.16383/j.aas.c200551. [6] Zhang T, Xie S, Rose O.Real-time Job Shop Scheduling Based on Simulation and Markov Decision Processes[C]// 2017 Winter Simulation Conference (WSC). Las Vegas: IEEE, 2017: 3899-3907. [7] 陈勇, 阮幸聪, 鲁建厦. 基于元胞自动机的大型零件生产车间动态柔性调度仿真建模[J]. 中国机械工程, 2010, 21(21): 2603-2609. Chen Yong, Ruan Xingcong, Lu Jianxia.Simulation Modeling of Dynamic & Flexible Scheduling about Large-sized Component Production Workshop Based on Cellular Automata[J]. China Mechanical Engineering, 2010, 21(21): 2603-2609. [8] 郑忠, 徐乐, 高小强. 基于元胞自动机的车间天车调度仿真模型[J]. 系统工程理论与实践, 2008(2): 137-142. Zheng Zhong, Xu Le, Gao Xiaoqiang.Simulation Model of Crane Scheduling in Workshop Based on Cellular Automata[J]. System Engineering Theory and Practice, 2008(2): 137-142. [9] 孟寅茂. 基于元胞机的造船企业分段车间空间调度建模与仿真[D]. 杭州: 浙江工业大学, 2012. Meng Yinmao.Modeling and Simulation of Block Workshop Spatial Scheduling Based on Cellular Automata in Shipbuilding Enterprise[D]. Hangzhou: Zhejiang University of Technology, 2012. [10] 张晴, 饶运清. 车间动态调度方法研究[J]. 机械制造, 2003, 41(1): 39-41. Zhang Qing, Rao Yunqing.Research on Dynamic Workshop Scheduling Method[J]. Machinery, 2003, 41(1): 39-41. [11] 曲丹. 基于多Agent的车间调度仿真系统研究[D]. 成都: 西华大学, 2009. Qu Dan.Research on Simulation System of Job-Shop Scheduling Based on Multi-Agent[D]. Chengdu: Xihua University, 2009. [12] 徐修文, 邱顺流, 宋豫川, 等. 离散制造车间动态事件影响评估方法[J]. 重庆大学学报(自然科学版), 2012, 35(增1): 1-5. Xu Xiuwen, Qiu Shunliu, Song Yuchuan, et al.Impact Assessment Method of Dynamic Events in Discrete Production Workshop[J]. Journal of Chongqing University(Natural Science Edition), 2012, 35(S1): 1-5. [13] Park J, Chun J, Kim S H, et al.Learning to Schedule Job-shop Problems: Representation and Policy Learning Using Graph Neural Network and Reinforcement Learning[J]. International Journal of Production Research (S0020-7543), 2021, 59(11): 1-18. [14] 张超勇. 基于自然启发式算法的作业车间调度问题理论与应用研究[D]. 武汉: 华中科技大学, 2007. Zhang Chaoyong.Research on the Shop Scheduling Problem with Naturally-Inspired Heuristic Algorithms[D]. Wuhan: Huazhong University of Science and Technology, 2007. [15] Sampson J R.Adaptation in Natural and Artificial Systems (John H. Holland)[J]. Society for Industrial and Applied Mathematics (S0036-1445), 1976, 18(3): 529-530. [16] Sivaram M, Batri K, Amin Salih M, et al.Exploiting the Local Optima in Genetic Algorithm using Tabu Search[J]. Indian Journal of Science and Technology (S0974-6846), 2019, 12(1): 1-13. [17] Kirkpatrick S, Gelatt C D, Vecchi M P.Optimization by Simulated Annealing[J]. Science (S0036-8075), 1983, 220(4598): 671-680. [18] Manosij G, Ritam G, Sarkar R, et al.A Wrapper-filter Feature Selection Technique Based on Ant Colony Optimization[J]. Neural Computing & Applications (S0941-0643), 2020, 32(12): 7839-7857. [19] Venter G, Jaroslaw S S.Particle Swarm Optimization[J]. AIAA Journal (S0001-1452), 2003, 41(8): 129-132. [20] Farmer J D, Packard N H, Perelson A S. The Immune System, Adaptation, and Machine Learning[J]. Physica D: Nonlinear Phenomena (S0167-2789), 1986, 22(1/3): 187-204. [21] Arulkumaran K, Deisenroth M P, Brundage M, et al.Deep Reinforcement Learning: A Brief Survey[J]. IEEE Signal Processing Magazine (S1053-5888), 2017, 34(6): 26-38. [22] Sutton R S, Barto A G.Reinforcement Learning: An Introduction[M]. Cambridge: MIT Press, 2018. [23] Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning (S0885-6125), 1992, 8(3/4): 279-292. [24] Xue T, Zeng P, Yu H.A Reinforcement Learning Method for Multi-AGV Scheduling in Manufacturing[C]// 2018 IEEE International Conference on Industrial Technology (ICIT). Lyon: IEEE, 2018: 1557-1561. [25] Luo S.Dynamic Scheduling for Flexible Job Shop with New Job Insertions by Deep Reinforcement Learning[J]. Applied Soft Computing (S1568-4946), 2020, 91: 106208. [26] Samsonov V, Kemmerling M, Paegert M, et al.Manufacturing Control in Job Shop Environments with Reinforcement Learning[C]// 13th International Conference on Agents and Artificial Intelligence. 2021. [27] 李亚飞, 吴庆顺, 徐明亮, 等. 基于强化学习的舰载机保障作业实时调度方法[J]. 中国科学: 信息科学, 2021, 51(2): 247-262. Li Yafei, Wu Qingshun, Xu Mingliang, et al.Real-time Scheduling for Carrier-borne Aircraft Support Operations:a Reinforcement Learning Approach[J]. Science China Information Sciences, 2021, 51(2): 247-262. [28] Zhang C, Song W, Cao Z, et al.Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning[C]// Neural Information Processing Systems (NeurIPS). Vancouver: MIT Press, 2020. [29] Hameed M, Schwung A.Reinforcement Learning on Job Shop Scheduling Problems Using Graph Networks[J]. arXiv preprint arXiv:2009.03836, 2020. [30] 熊波. 基于异构图神经网络的多智能体资源调度模型[D]. 北京: 北京交通大学, 2020. Xiong Bo.Multi-Agent Resource Balancing with Heterogeneous Graph Neural Networks[D]. Beijing: Beijing Jiaotong University, 2020. [31] Shahrabi J, Adibi M A, Mahootchi M.A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop Scheduling[J]. Computers & Industrial Engineering (S0360-8352), 2017, 110(8): 75-82. [32] Chen R, Yang B, Li S, et al.A Self-learning Genetic Algorithm Based on Reinforcement Learning for Flexible Job-shop Scheduling Problem[J]. Computers & Industrial Engineering (S0360-8352), 2020, 149(7): 106778. [33] Chen X, Tian Y. Learning to Perform Local Rewriting for Combinatorial Optimization[J]. arXiv preprint arXiv:1810.00337, 2018. |