Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (4): 895-909.doi: 10.16182/j.issn1004731x.joss.23-1535
• Papers • Previous Articles Next Articles
Li Min1, Zhang Sen2, Zeng Xiangguang1, Wang Gang3, Zhang Tongwei2, Xie Dijie1, Ren Wenzhe1, Zhang Tao1
Received:
2023-12-15
Revised:
2024-02-27
Online:
2025-04-17
Published:
2025-04-16
CLC Number:
Li Min, Zhang Sen, Zeng Xiangguang, Wang Gang, Zhang Tongwei, Xie Dijie, Ren Wenzhe, Zhang Tao. Trajectory Planning of Quadruped Robot Over Obstacle with Single Leg Based on Deep Reinforcement Learning[J]. Journal of System Simulation, 2025, 37(4): 895-909.
1 | Li Xiangfei, Zhao Huan, He Xianming, et al. A Novel Cartesian Trajectory Planning Method by Using Triple NURBS Curves for Industrial Robots[J]. Robotics and Computer-Integrated Manufacturing, 2023, 83: 102576. |
2 | Huang Zhenzhen, Wu Hong. Overview of Trajectory Planning Methods for Robot Systems[C]//2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Piscataway: IEEE, 2021: 375-381. |
3 | Taheri Hamid, Mozayani Nasser. A Study on Quadruped Mobile Robots[J]. Mechanism and Machine Theory, 2023, 190: 105448. |
4 | 董理, 杨东, 鹿建森. 工业机器人轨迹规划方法综述[J]. 控制工程, 2022, 29(12): 2365-2374. |
Dong Li, Yang Dong, Lu Jiansen. Trajectory Planning Methods for Industrial Robots: A Review[J]. Control Engineering of China, 2022, 29(12): 2365-2374. | |
5 | 董豪, 杨静, 李少波, 等. 基于深度强化学习的机器人运动控制研究进展[J]. 控制与决策, 2022, 37(2): 278-292. |
Dong Hao, Yang Jing, Li Shaobo, et al. Research Progress of Robot Motion Control Based on Deep Reinforcement Learning[J]. Control and Decision, 2022, 37(2): 278-292. | |
6 | Zhong Jun, Luo Minzhou, Fan Jizhuang, et al. Trajectory Planning of an Intermittent Jumping Quadruped Robot with Variable Redundant and Underactuated Joints[J]. Complexity, 2018, 2018(1): 5369427. |
7 | Zeng Xuanqi, Zhang Songyuan, Zhang Hongji, et al. Leg Trajectory Planning for Quadruped Robots with High-speed Trot Gait[J]. Applied Sciences, 2019, 9(7): 1508. |
8 | Chen Mingfang, Zhang Kaixiang, Wang Sen, et al. Analysis and Optimization of Interpolation Points for Quadruped Robots Joint Trajectory[J]. Complexity, 2020, 2020(1): 3507679. |
9 | Wang Kang, Zhao Haoyu, Meng Fei, et al. Research on the Jumping Control Methods of a Quadruped Robot That Imitates Animals[J]. Biomimetics, 2023, 8(1): 36. |
10 | Tao Bo, Yang Dongchao, Huang Geng, et al. Omnidirectional Motion Control Method of Quadruped Robot Based on 3D-CPG Oscillator Group[C]//Robotics in Natural Settings. Cham: Springer International Publishing, 2023: 301-312. |
11 | Liu Qingyu, Xu Duo, Yuan Bing, et al. Distance-controllable Long Jump of Quadruped Robot Based on Parameter Optimization Using Deep Reinforcement Learning[J]. IEEE Access, 2023, 11: 98566-98577. |
12 | Sharma Bibhu, Pillai Branesh M, Suthakorn Jackrit. Biomechanical Trajectory Optimization of Human Sit-to-stand Motion with Stochastic Motion Planning Framework[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(4): 1022-1033. |
13 | Tan Wenhao, Fang Xing, Zhang Wei, et al. A Hierarchical Framework for Quadruped Omnidirectional Locomotion Based on Reinforcement Learning[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(4): 5367-5378. |
14 | Wu Jiaxi, Wang Chen'an, Zhang Dianmin, et al. Learning Smooth and Omnidirectional Locomotion for Quadruped Robots[C]//2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). Piscataway: IEEE, 2021: 633-638. |
15 | Bogdanovic Miroslav, Khadiv Majid, Righetti L. Model-free Reinforcement Learning for Robust Locomotion Using Demonstrations from Trajectory Optimization[J]. Frontiers in Robotics and AI, 2022, 9: 854212. |
16 | Zhu Wangshu, Rosendo A. PSTO: Learning Energy-efficient Locomotion for Quadruped Robots[J]. Machines, 2022, 10(3): 185. |
17 | Yang Laiyi, Bi Jing, Yuan Haitao. Dynamic Path Planning for Mobile Robots with Deep Reinforcement Learning[J]. IFAC-PapersOnLine, 2022, 55(11): 19-24. |
18 | Nippun Kumaar A A, Kochuvila Sreeja. Mobile Service Robot Path Planning Using Deep Reinforcement Learning[J]. IEEE Access, 2023, 11: 100083-100096. |
19 | Dong Lu, He Zichen, Song Chunwei, et al. A Review of Mobile Robot Motion Planning Methods: From Classical Motion Planning Workflows to Reinforcement Learning-based Architectures[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 439-459. |
20 | Tian Hao, Xu Xiaolong, Qi Lianyong, et al. CoPace: Edge Computation Offloading and Caching for Self-driving with Deep Reinforcement Learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13281-13293. |
21 | Chihara Takanori, Sakamoto Jiro. Generating Deceleration Behavior of Automatic Driving by Reinforcement Learning That Reflects Passenger Discomfort[J]. International Journal of Industrial Ergonomics, 2022, 91: 103343. |
22 | 陈善言, 关永, 施智平, 等. 机器人碰撞检测方法形式化[J]. 软件学报, 2022, 33(6): 2246-2263. |
Chen Shanyan, Guan Yong, Shi Zhiping, et al. Formalization of Collision Detection Method for Robots[J]. Journal of Software, 2022, 33(6): 2246-2263. |
[1] | Zhang Sen, Dai Qiangqiang. UAV Path Planning Based on Improved Deep Deterministic Policy Gradients [J]. Journal of System Simulation, 2025, 37(4): 875-881. |
[2] | Wang He, Xu Jianing, Yan Guangyu. Research on Pedestrian Avoidance Strategy for AGV Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(3): 595-606. |
[3] | Zhang Bin, Lei Yonglin, Li Qun, Gao Yuan, Chen Yong, Zhu Jiajun, Bao Chenlong. Reinforcement Learning Modeling of Missile Penetration Decision Based on Combat Simulation [J]. Journal of System Simulation, 2025, 37(3): 763-774. |
[4] | Huang Sijin, Wen Jia, Chen Zheyi. Intelligent Service Migration towards MEC-based IoV Systems [J]. Journal of System Simulation, 2025, 37(2): 379-391. |
[5] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
[6] | Zhang Daoxun, Chen Xieyuanli, Zhong Zhengyu, Xu Ming, Zheng Zhiqiang, Lu Huimin. Novel Multi-gait Strategy for Stable and Efficient Quadruped Robot Locomotion [J]. Journal of System Simulation, 2025, 37(1): 13-24. |
[7] | Wang Zhu, Zhang Zhenpeng, Zhang Mengtong, Xu Guangtong. Sequential Convex Programming Using Safe Flight Corridor for Trajectory Planning of UAVs [J]. Journal of System Simulation, 2025, 37(1): 134-144. |
[8] | Li Chao, Li Jiabao, Ding Caichang, Ye Zhiwei, Zuo Fangwei. Edge Surveillance Task Offloading and Resource Allocation Algorithm Based on DRL [J]. Journal of System Simulation, 2024, 36(9): 2113-2126. |
[9] | Zhu Zilu, Liu Yongkui, Zhang Lin, Wang Lihui, Lin Tingyu. Simulation of Robotic Peg-in-hole Assembly Strategy Based on DRL [J]. Journal of System Simulation, 2024, 36(6): 1414-1424. |
[10] | Wang Hongjun, Lin Junqiang, Zou Xiangjun, Zhang Po, Zhou Mingxuan, Zou Weirui, Tang Yunchao, Luo Lufeng. Construction of a Virtual Interactive System for Orchards Based on Digital Twin [J]. Journal of System Simulation, 2024, 36(6): 1493-1508. |
[11] | Wang Yuan, Xu Lin, Gong Xiaoze, Zhang Yongliang, Wang Yongli. Gradient-based Deep Reinforcement Learning Interpretation Methods [J]. Journal of System Simulation, 2024, 36(5): 1130-1140. |
[12] | Zhao Yingying, Dong Pusen, Zhu Tianchen, Li Fan, Su Yun, Tai Zhenying, Sun Qingyun, Fan Hang. Efficiency Optimization Method for Data Sampling in Power Grid Topology Scheduling Simulation [J]. Journal of System Simulation, 2024, 36(2): 283-295. |
[13] | Wang Xinpeng, Fu Huiqiao, Deng Guizhou, Tang Kaiqiang, Chen Chunlin, Liu Canghai. Research on Motion Planning of Hexapod Robot Based on DRL and Free Gait [J]. Journal of System Simulation, 2024, 36(2): 373-384. |
[14] | Pan Hainan, Chen Bailiang, Huang Kaihong, Ren Junkai, Cheng Chuang, Lu Huimin, Zhang Hui. Flipper Control Method for Tracked Robot Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(2): 405-414. |
[15] | An Jing, Si Guangya, Zhang Lei. Strategy Optimization Method of Multi-dimension Projection Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(1): 39-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||