Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (2): 283-295.doi: 10.16182/j.issn1004731x.joss.23-0958
• Special Column:Big Models Enable Energy Internet Planning and Operation • Next Articles
Zhao Yingying1,2(), Dong Pusen3, Zhu Tianchen3, Li Fan1,2, Su Yun1,2, Tai Zhenying3, Sun Qingyun3, Fan Hang4(
)
Received:
2023-07-29
Revised:
2023-10-19
Online:
2024-02-15
Published:
2024-02-04
Contact:
Fan Hang
E-mail:zhaoyy_sh@163.com;fanhang123456@163.com
CLC Number:
Zhao Yingying, Dong Pusen, Zhu Tianchen, Li Fan, Su Yun, Tai Zhenying, Sun Qingyun, Fan Hang. Efficiency Optimization Method for Data Sampling in Power Grid Topology Scheduling Simulation[J]. Journal of System Simulation, 2024, 36(2): 283-295.
1 | 董伟杰, 刘科研, 王义龙, 等. 高比例分布式发电接入配电网自适应控制方法[J]. 系统仿真学报, 2020, 32(10): 2052-2058. |
Dong Weijie, Liu Keyan, Wang Yilong, et al. Adaptive Control Method of High Proportion Distributed Generation Connected to Distribution Network[J]. Journal of System Simulation, 2020, 32(10): 2052-2058. | |
2 | Zhou Mike, Yan Jianfeng, Zhou Xiaoxin. Real-time Online Analysis of Power Grid[J]. CSEE Journal of Power and Energy Systems, 2020, 6(1): 236-238. |
3 | Song Xinya, Cai Hui, Kircheis Jan, et al. Application of Digital Twin Assistant-system in State Estimation for Inverter Dominated Grid[C]//2020 55th International Universities Power Engineering Conference (UPEC). Piscataway, NJ, USA: IEEE, 2020: 1-6. |
4 | 陈强, 王意, 李康顺. 双重需求响应的虚拟电厂建模与调度研究[J]. 系统仿真学报, 2023, 35(4): 822-832. |
Chen Qiang, Wang Yi, Li Kangshun. Research on Modeling and Scheduling of Virtual Power Plant with Dual Demand Response[J]. Journal of System Simulation, 2023, 35(4): 822-832. | |
5 | 沈沉, 曹仟妮, 贾孟硕, 等. 电力系统数字孪生的概念、特点及应用展望[J]. 中国电机工程学报, 2022, 42(2): 487-498, 中插4. |
Shen Chen, Cao Qianni, Jia Mengshuo, et al. Concepts, Characteristics and Prospects of Application of Digital Twin in Power System[J]. Proceedings of the CSEE, 2022, 42(2): 487-498, 中插4. | |
6 | 冯昌森, 沈佳静, 赵崇娟, 等. 基于合作博弈的智慧能源社区协同运行策略[J]. 电力自动化设备, 2021, 41(4): 85-93. |
Feng Changsen, Shen Jiajing, Zhao Chongjuan, et al. Cooperative Game-based Coordinated Operation Strategy of Smart Energy Community[J]. Electric Power Automation Equipment, 2021, 41(4): 85-93. | |
7 | 王珂, 姚建国, 余佩遥, 等. 基于深度强化学习的电网前瞻调度智能决策架构及关键技术初探[J]. 中国电机工程学报, 2022, 42(15): 5430-5438, 中插4. |
Wang Ke, Yao Jianguo, Yu Peiyao, et al. Architecture and Key Technologies of Intelligent Decision-making of Power Grid Look-ahead Dispatch Based on Deep Reinforcement Learning[J]. Proceedings of the CSEE, 2022, 42(15): 5430-5438, 中插4. | |
8 | Glavitsch H. Switching as Means of Control in the Power System[J]. International Journal of Electrical Power & Energy Systems, 1985, 7(2): 92-100. |
9 | Mazi A A, Wollenberg B F, Hesse M H. Corrective Control of Power System Flows by Line and Bus-bar Switching[J]. IEEE Transactions on Power Systems, 1986, 1(3): 258-264. |
10 | Fisher E B, O'Neill R P, Ferris M C. Optimal Transmission Switching[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1346-1355. |
11 | Khodaei A, Shahidehpour M. Transmission Switching in Security-constrained Unit Commitment[J]. IEEE Transactions on Power Systems, 2010, 25(4): 1937-1945. |
12 | David Fuller J, Ramasra Raynier, Cha Amanda. Fast Heuristics for Transmission-line Switching[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1377-1386. |
13 | Dehghanian P, Wang Yaping, Gurrala Gurunath, et al. Flexible Implementation of Power System Corrective Topology Control[J]. Electric Power Systems Research, 2015, 128: 79-89. |
14 | Alhazmi M, Dehghanian P, Wang Shiyuan, et al. Power Grid Optimal Topology Control Considering Correlations of System Uncertainties[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5594-5604. |
15 | 魏利胜, 杨奔奔, 孙瑞霞. 基于新型BBO算法的微电网优化调度研究[J]. 系统仿真学报, 2023, 35(5): 1075-1085. |
Wei Lisheng, Yang Benben, Sun Ruixia. Research on Optimal Scheduling of Microgrid Based on NBBO Algorithm[J]. Journal of System Simulation, 2023, 35(5): 1075-1085. | |
16 | Duan Jiajun, Shi Di, Diao Ruisheng, et al. Deep-reinforcement-learning-based Autonomous Voltage Control for Power Grid Operations[J]. IEEE Transactions on Power Systems, 2020, 35(1): 814-817. |
17 | Xi Lei, Yu Lu, Xu Yanchun, et al. A Novel Multi-agent DDQN-AD Method-based Distributed Strategy for Automatic Generation Control of Integrated Energy Systems[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2417-2426. |
18 | 马苗苗, 董利鹏, 刘向杰. 基于Q-learning算法的多智能体微电网能量管理策略[J]. 系统仿真学报, 2023, 35(7): 1487-1496. |
Ma Miaomiao, Dong Lipeng, Liu Xiangjie. Energy Management Strategy of Multi-agent Microgrid Based on Q-learning Algorithm[J]. Journal of System Simulation, 2023, 35(7): 1487-1496. | |
19 | 王新迎, 赵琦, 赵黎媛, 等. 基于深度Q学习的电热综合能源系统能量管理[J]. 电力建设, 2021, 42(3): 10-18. |
Wang Xinying, Zhao Qi, Zhao Liyuan, et al. Energy Management Approach for Integrated Electricity-heat Energy System Based on Deep Q-learning Network[J]. Electric Power Construction, 2021, 42(3): 10-18. | |
20 | 李嘉文, 余涛, 张孝顺, 等. 基于改进深度确定性梯度算法的AGC发电功率指令分配方法[J]. 中国电机工程学报, 2021, 41(21): 7198-7211, 中插2. |
Li Jiawen, Yu Tao, Zhang Xiaoshun, et al. AGC Power Generation Command Allocation Method Based on Improved Deep Deterministic Policy Gradient Algorithm[J]. Proceedings of the CSEE, 2021, 41(21): 7198-7211, 中插2. | |
21 | 周毅, 周良才, 丁佳立, 等. 基于深度强化学习的电网拓扑优化及潮流控制[J]. 上海交通大学学报, 2021, 55(增2): 7-14. |
Zhou Yi, Zhou Liangcai, Ding Jiali, et al. Power Network Topology Optimization and Power Flow Control Based on Deep Reinforcement Learning[J]. Journal of Shanghai Jiaotong University, 2021, 55(S2): 7-14. | |
22 | Marot Antoine, Donnot Benjamin, Dulac-Arnold Gabriel, et al. Learning to Run a Power Network Challenge: a Retrospective Analysis[C]//Proceedings of the NeurIPS 2020 Competition and Demonstration Track. Chia Laguna Resort, Sardinia, Italy: PMLR, 2021: 112-132. |
23 | 李宏仲, 王磊, 林冬, 等. 多主体参与可再生能源消纳的Nash博弈模型及其迁移强化学习求解[J]. 中国电机工程学报, 2019, 39(14): 4135-4149. |
Li Hongzhong, Wang Lei, Lin Dong, et al. A Nash Game Model of Multi-agent Participation in Renewable Energy Consumption and the Solving Method Via Transfer Reinforcement Learning[J]. Proceedings of the CSEE, 2019, 39(14): 4135-4149. | |
24 | Ahrarinouri Mehdi, Rastegar Mohammad, Karami K, et al. Distributed Reinforcement Learning Energy Management Approach in Multiple Residential Energy hubs[J]. Sustainable Energy, Grids and Networks, 2022, 32: 100795. |
25 | Qin Yude, Ke Ji, Wang Biao, et al. Energy Optimization for Regional Buildings Based on Distributed Reinforcement Learning[J]. Sustainable Cities and Society, 2022, 78: 103625. |
26 | 林永君, 陈鑫, 杨凯, 等. 含多微网的主动配电网双层分布式优化调度[J]. 系统仿真学报, 2022, 34(11): 2323-2336. |
Lin Yongjun, Chen Xin, Yang Kai, et al. Bilevel Distributed Optimal Dispatch of Active Distribution Network with Multi-microgrids[J]. Journal of System Simulation, 2022, 34(11): 2323-2336. | |
27 | Krishnan S, Lam M, Chitlangia S, et al. QuaRL: Quantization for Fast and Environmentally Sustainable Reinforcement Learning[EB/OL]. (2022-11-14) [2023-06-30]. . |
28 | Louizos Christos, Reisser Matthias, Blankevoort T, et al. Relaxed Quantization for Discretized Neural Networks[EB/OL]. (2018-10-03) [2023-06-30]. . |
29 | Nagel M, Fournarakis M, Amjad R A, et al. A White Paper on Neural Network Quantization[EB/OL]. (2021-06-15) [2023-06-30]. . |
30 | Krishnamoorthi R. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper[EB/OL]. (2018-06-21) [2023-06-30]. . |
31 | Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous Control with Deep Reinforcement Learning[EB/OL]. (2019-07-05) [2023-06-30]. . |
32 | Horgan D, Quan J, Budden D, et al. Distributed Prioritized Experience Replay[J]. (2018-03-02) [2023-06-30]. . |
33 | Zhang Shangtong, Sutton Richard S. A Deeper Look at Experience Replay[EB/OL]. (2018-04-30) [2023-06-30]. . |
34 | Sutton R S, Barto A G. Introduction to Reinforcement Learning[M]. Cambridge: MIT Press, 1998. |
35 | Wang Ziyu, Schaul T, Hessel M, et al. Dueling Network Architectures for Deep Reinforcement Learning[C]//Proceedings of the 33rd International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2016: 1995-2003. |
36 | van Hasselt Hado, Guez A, Silver D. Deep Reinforcement Learning with Double Q-learning[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2016: 2094-2100. |
37 | Alexandre dos Santos Mignon, Ricardo Luis de Azevedo da Rocha. An Adaptive Implementation of ε-greedy in Reinforcement Learning[J]. Procedia Computer Science, 2017, 109: 1146-1151. |
[1] | Wang Xinpeng, Fu Huiqiao, Deng Guizhou, Tang Kaiqiang, Chen Chunlin, Liu Canghai. Research on Motion Planning of Hexapod Robot Based on DRL and Free Gait [J]. Journal of System Simulation, 2024, 36(2): 373-384. |
[2] | Pan Hainan, Chen Bailiang, Huang Kaihong, Ren Junkai, Cheng Chuang, Lu Huimin, Zhang Hui. Flipper Control Method for Tracked Robot Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(2): 405-414. |
[3] | An Jing, Si Guangya, Zhang Lei. Strategy Optimization Method of Multi-dimension Projection Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(1): 39-49. |
[4] | Wang Yukun, Wang Ze, Dong Liwei, Li Ni. Research on Multi-aircraft Air Combat Behavior Modeling Based on Hierarchical Intelligent Modeling Methods [J]. Journal of System Simulation, 2023, 35(10): 2249-2261. |
[5] | Hui Nie, Kangshun Li, Yang Su. A Quantization Training Algorithm of Adaptive Learning Quantization Scale Fators [J]. Journal of System Simulation, 2022, 34(7): 1639-1650. |
[6] | Lü Hongli, Wang Renfang. Image Segmentation Based on Active Contour Derived by Signed Pressure Force Function [J]. Journal of System Simulation, 2016, 28(1): 174-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||