Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (1): 13-24.doi: 10.16182/j.issn1004731x.joss.24-0917
• Special Column:Modeling,Simulation and Application for Intelligent Unmanned System • Previous Articles Next Articles
Zhang Daoxun, Chen Xieyuanli, Zhong Zhengyu, Xu Ming, Zheng Zhiqiang, Lu Huimin
Received:
2024-08-20
Revised:
2024-09-26
Online:
2025-01-20
Published:
2025-01-23
Contact:
Lu Huimin
CLC Number:
Zhang Daoxun, Chen Xieyuanli, Zhong Zhengyu, Xu Ming, Zheng Zhiqiang, Lu Huimin. Novel Multi-gait Strategy for Stable and Efficient Quadruped Robot Locomotion[J]. Journal of System Simulation, 2025, 37(1): 13-24.
1 | Sheng Jiapeng, Chen Yanyun, Fang Xing, et al. Bio-inspired Rhythmic Locomotion for Quadruped Robots[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6782-6789. |
2 | Bledt G, Powell M J, Katz B, et al. MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 2245-2252. |
3 | Jin Yongbin, Liu Xianwei, Shao Yecheng, et al. High-speed Quadrupedal Locomotion by Imitation-relaxation Reinforcement Learning[J]. Nature Machine Intelligence, 2022, 4(12): 1198-1208. |
4 | Norby J, Johnson A M. Fast Global Motion Planning for Dynamic Legged Robots[C]//2020 IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 3829-3836. |
5 | Miki Takahiro, Lee Joonho, Hwangbo Jemin, et al. Learning Robust Perceptive Locomotion for Quadrupedal Robots in the Wild[J]. Science Robotics, 2022, 7(62): eabk2822. |
6 | Urbain Gabriel, Barasuol Victor, Semini Claudio, et al. Stance Control Inspired by Cerebellum Stabilizes Reflex-based Locomotion on HyQ Robot[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 6127-6133. |
7 | Umberger B R, Martin P E. Mechanical Power and Efficiency of Level Walking with Different Stride Rates[J]. Journal of Experimental Biology, 2007, 210(18): 3255-3265. |
8 | Muraro A, Chevallereau C, Aoustin Y. Optimal Trajectories for a Quadruped Robot with Trot, Amble and Curvet Gaits for Two Energetic Criteria[J]. Multibody System Dynamics, 2003, 9(1): 39-62. |
9 | Srinivasan M, Ruina A. Computer Optimization of a Minimal Biped Model Discovers Walking and Running[J]. Nature, 2006, 439(7072): 72-75. |
10 | di Prampero P E. The Energy Cost of Human Locomotion on Land and in Water[J]. International Journal of Sports Medicine, 1986, 7(2): 55-72. |
11 | Hoyt D F, Taylor C R. Gait and the Energetics of Locomotion in Horses[J]. Nature, 1981, 292(5820): 239-240. |
12 | Li Qi, Qian Letian, Wang Shuhan, et al. Towards Generation and Transition of Diverse Gaits for Quadrupedal Robots Based on Trajectory Optimization and Whole-body Impedance Control[J]. IEEE Robotics and Automation Letters, 2023, 8(4): 2389-2396. |
13 | Koo I M, Tran Duc Trong, Haeng Lee Yoon, et al. Biologically Inspired Gait Transition Control for a Quadruped Walking Robot[J]. Autonomous Robots, 2015, 39(2): 169-182. |
14 | Saraf Prathamesh, Sarkar Abhishek, Javed Arshad. Terrain Adaptive Gait Transitioning for a Quadruped Robot Using Model Predictive Control[C]//2021 26th International Conference on Automation and Computing (ICAC). Piscataway: IEEE, 2021: 1-6. |
15 | Shang Linlin, Li Zhaosheng, Wang Wei, et al. Smooth Gait Transition Based on CPG Network for A Quadruped Robot[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway: IEEE, 2019: 358-363. |
16 | Fukui Takahiro, Fujisawa Hisamu, Otaka Kotaro, et al. Autonomous Gait Transition and Galloping over Unperceived Obstacles of a Quadruped Robot with CPG Modulated by Vestibular Feedback[J]. Robotics and Autonomous Systems, 2019, 111: 1-19. |
17 | Santos Cristina P, Matos Vítor. Gait Transition and Modulation in a Quadruped Robot: A Brainstem-like Modulation Approach[J]. Robotics and Autonomous Systems, 2011, 59(9): 620-634. |
18 | Dai Owaki, Ishiguro Akio. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping[J]. Scientific Reports, 2017, 7(1): 277. |
19 | 陈久朋, 陈治帆, 伞红军, 等. 中枢模式发生器与足端轨迹的非线性映射[J]. 仪器仪表学报, 2024, 45(4): 258-271. |
Chen Jiupeng, Chen Zhifan, Hongjun San, et al. Nonlinear Mapping Between Central Pattern Generator and Foot Trajectory[J]. Chinese Journal of Scientific Instrument, 2024, 45(4): 258-271. | |
20 | 陈久朋, 李春磊, 伞红军, 等. 基于模型的四足机器人步态转换控制研究[J]. 农业机械学报, 2024, 55(3): 431-440, 451. |
Chen Jiupeng, Li Chunlei, Hongjun San, et al. Model Based Gait Transition Control for Quadruped Robots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(3): 431-440, 451. | |
21 | 张秀丽, 王琪, 黄森威, 等. 一种多模型融合的仿猎豹四足机器人复杂运动控制方法[J]. 机器人, 2022, 44(6): 682-693, 707. |
Zhang Xiuli, Wang Qi, Huang Senwei, et al. A Multi-model Fusion Based Complex Motion Control Approach for a Cheetah-mimicking Quadruped Robot[J]. Robot, 2022, 44(6): 682-693, 707. | |
22 | Wang Jiayi, Chatzinikolaidis I, Mastalli C, et al. Automatic Gait Pattern Selection for Legged Robots[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [S.l.]: IEEE, 2020: 3990-3997. |
23 | 王琪, 张秀丽, 江磊, 等. 具有2DOF铰接式躯干的仿猎豹四足奔跑机器人[J]. 机器人, 2022, 44(3): 257-266. |
Wang Qi, Zhang Xiuli, Jiang Lei, et al. A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk[J]. Robot, 2022, 44(3): 257-266. | |
24 | 钱伟, 王志瑞, 苏波, 等. 变刚度四足机器人的连续型仿生脊柱设计[J]. 中南大学学报(自然科学版), 2023, 54(8): 3112-3121. |
Qian Wei, Wang Zhirui, Su Bo, et al. Mechanical Design of a Variable Stiffness Continuous Bionic Spine for a Quadruped Robot[J]. Journal of Central South University(Science and Technology), 2023, 54(8): 3112-3121. | |
25 | Xi Weitao, Yesilevskiy Y, Remy C D. Selecting Gaits for Economical Locomotion of Legged Robots[J]. The International Journal of Robotics Research, 2016, 35(9): 1140-1154. |
26 | Smit-Anseeuw N, Gleason R, Vasudevan R, et al. The Energetic Benefit of Robotic Gait Selection——A Case Study on the Robot RAMone[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 1124-1131. |
27 | Griffin T M, Kram R, Wickler S J, et al. Biomechanical and Energetic Determinants of the Walk-trot Transition in Horses[J]. Journal of Experimental Biology, 2004, 207(24): 4215-4223. |
28 | Norby J, Yang Y, Tajbakhsh A, et al. Quad-SDK: Full Stack Software Framework for Agile Quadrupedal Locomotion[C]//ICRA Workshop on Legged Robots. [S.l. : s.n.], 2022. |
[1] | Chikun Gong, Xunwei Wu, Lipeng Yuan. Control of Quadruped Robot Based on Impedance and Virtual Model [J]. Journal of System Simulation, 2022, 34(10): 2152-2161. |
[2] | Xu Haidong, Gan Su, Ren Jie, Wang Binrui, Jin Yinglian. Gait CPG Adjustment for a Quadruped Robot Based on Hopf Oscillator [J]. Journal of System Simulation, 2017, 29(12): 3092-3099. |
[3] | Hu Nan, Li Shaoyuan, Huang Dan, Gao Feng. Gait Planning and Control of Quadruped Robot with High Payload [J]. Journal of System Simulation, 2015, 27(3): 529-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||