Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (10): 2630-2642.doi: 10.16182/j.issn1004731x.joss.24-0515
• Papers • Previous Articles
Wang Ning, Mao Jianlin, Li Dayan, Fang Chengyuan, Qian Chengze
Received:
2024-05-15
Revised:
2024-07-01
Online:
2025-10-20
Published:
2025-10-21
Contact:
Mao Jianlin
CLC Number:
Wang Ning, Mao Jianlin, Li Dayan, Fang Chengyuan, Qian Chengze. Low-energy Multi-robot Path Planning Algorithm under HCA* Framework[J]. Journal of System Simulation, 2025, 37(10): 2630-2642.
Table 2
Average VSOC for each algorithm on different maps
地图 | 机器人数量/个 | 算例数量 | 平均路径总代价值/步 | ||
---|---|---|---|---|---|
B-IHCA* | B-IHCA*+GSS | E-HCA* | |||
29×29 maze | 4 | 20 | 108.40 | 108.40 | 108.40 |
8 | 20 | 217.30 | 216.75 | 216.60 | |
12 | 18 | 330.44 | 330.50 | 333.27 | |
16 | 18 | 472.44 | 471.89 | 472.62 | |
20 | 18 | 601.89 | 602.17 | 605.17 | |
24 | 17 | 736.50 | 736.39 | 737.82 | |
28 | 16 | 883.67 | 875.88 | 880.10 | |
32×32 room | 4 | 20 | 72.95 | 72.95 | 72.65 |
8 | 20 | 182.35 | 182.35 | 182.05 | |
12 | 18 | 294.10 | 294.20 | 292.95 | |
16 | 18 | 389.61 | 389.72 | 392.06 | |
20 | 18 | 503.78 | 503.89 | 507.41 | |
24 | 17 | 632.53 | 624.17 | 627.15 | |
28 | 16 | 753.72 | 752.22 | 756.26 | |
32×32 random | 4 | 20 | 68.10 | 68.10 | 68.10 |
8 | 20 | 164.25 | 164.25 | 164.90 | |
12 | 18 | 268.85 | 268.85 | 269.00 | |
16 | 18 | 377.45 | 377.45 | 378.35 | |
20 | 18 | 485.15 | 485.15 | 488.15 | |
24 | 17 | 585.90 | 585.90 | 589.90 | |
28 | 17 | 686.75 | 686.75 | 691.85 |
[1] | 高明, 唐洪, 张鹏. 机器人集群路径规划技术研究现状[J]. 国防科技大学学报, 2021, 43(1): 127-138. |
Gao Ming, Tang Hong, Zhang Peng. Survey of Path Planning Technologies for Robots Swarm[J]. Journal of National University of Defense Technology, 2021, 43(1): 127-138. | |
[2] | Zhang Kaixiang, Mao Jianlin, Chen Mingfang, et al. Multi-agent Priority Gaming for Path Planning in Chain-like Blocking Situation[J]. Advanced Engineering Informatics, 2024, 61: 102523. |
[3] | Zhang Yulun, Fontaine M C, Bhatt V, et al. Multi-robot Coordination and Layout Design for Automated Warehousing[C]//Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23). California: IJCAI, 2024: 5503-5511. |
[4] | Li Jiaoyang, Sun Kexuan, Ma Hang, et al. Moving Agents in Formation in Congested Environments[C]//Proceedings of the Thirteenth International Symposium on Combinatorial Search. Palo Alto: AAAI Press, 2021: 131-132. |
[5] | Wu Mengdie, Yan Wenyao, Hasan Haslin, et al. A Review of Multi-agent Path Finding Algorithms[C]//2023 11th International Conference on Information Systems and Computing Technology (ISCTech). Piscataway: IEEE, 2023: 69-73. |
[6] | Liu Minghua, Ma Hang, Li Jiaoyang, et al. Task and Path Planning for Multi-agent Pickup and Delivery[C]//Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. Richland: International Foundation for Autonomous Agents and Multiagent Systems, 2019: 1152-1160. |
[7] | Ma Hang, Yang Jingxing, Cohen L, et al. Feasibility Study: Moving Non-homogeneous Teams in Congested Video Game Environments[C]//Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Palo Alto: AAAI Press, 2021: 270-272. |
[8] | Sharon Guni, Stern Roni, Goldenberg Meir, et al. The Increasing Cost Tree Search for Optimal Multi-agent Pathfinding[J]. Artificial Intelligence, 2013, 195: 470-495. |
[9] | Sharon Guni, Stern Roni, Felner Ariel, et al. Conflict-based Search for Optimal Multi-agent Pathfinding[J]. Artificial Intelligence, 2015, 219: 40-66. |
[10] | Boyarski Eli, Felner Ariel, Stern Roni, et al. ICBS: The Improved Conflict-based Search Algorithm for Multi-agent Pathfinding[C]//Proceedings of the Eighth International Symposium on Combinatorial Search. Palo Alto: AAAI Press, 2015: 223-225. |
[11] | Walker T T, Sturtevant Nathan R, Felner Ariel, et al. Conflict-based Increasing Cost Search[C]//Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling. Palo Alto: AAAI Press, 2021: 385-395. |
[12] | 宣志玮, 毛剑琳, 张凯翔. CBS框架下面向复杂地图的低拓展度A*算法[J]. 电子学报, 2022, 50(8): 1943-1950. |
Xuan Zhiwei, Mao Jianlin, Zhang Kaixiang. Low-expansion A* Algorithm Based on CBS Framework for Complex Map[J]. Acta Electronica Sinica, 2022, 50(8): 1943-1950. | |
[13] | 杨邹, 毛剑琳, 李大焱, 等. 基于冲突概率反馈的CBS分层多机器人路径规划[J/OL]. 计算机集成制造系统. (2023-07-31) [2024-07-01]. . |
Yang Zou, Mao Jianlin, Li Dayan, et al. CBS Hierarchical Multi-robot Path Planning Based on Conflict Probability Feedback[J/OL]. Computer Integrated Manufacturing Systems. (2023-07-31) [2024-07-01]. . | |
[14] | Silver David. Cooperative Pathfinding[C]//First Artificial Intelligence and Interactive Digital Entertainment Conference. Palo Alto: AAAI Press, 2021: 117-122. |
[15] | Phillips M, Likhachev M. SIPP: Safe Interval Path Planning for Dynamic Environments[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2011: 5628-5635. |
[16] | Yakovlev Konstantin, Andreychuk Anton, Stern Roni. Revisiting Bounded-suboptimal Safe Interval Path Planning[C]//Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling. Palo Alto: AAAI Press, 2020: 300-304. |
[17] | Li Jiaoyang, Ruml W, Koenig S. EECBS: Bounded-suboptimal Search for Multi-agent Path Finding[C]//Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence and the Thirty-Third Conference on Innovative Applications of Artificial Intelligence and the Eleventh Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2021: 12353-12362. |
[18] | 张凯翔, 毛剑琳, 向凤红, 等. 基于讨价还价博弈机制的B-IHCA*多机器人路径规划算法[J]. 自动化学报, 2023, 49(7): 1483-1497. |
Zhang Kaixiang, Mao Jianlin, Xiang Fenghong, et al. B-IHCA*, a Bargaining Game Based Multi-agent Path Finding Algorithm[J]. Acta Automatica Sinica, 2023, 49(7): 1483-1497. | |
[19] | Li Jiaoyang, Hoang T A, Lin E, et al. Intersection Coordination with Priority-based Search for Autonomous Vehicles[C]//Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2023: 11578-11585. |
[20] | Sartoretti G, Kerr J, Shi Yunfei, et al. PRIMAL: Pathfinding via Reinforcement and Imitation Multi-agent Learning[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2378-2385. |
[21] | Damani M, Luo Zhiyao, Wenzel E, et al. PRIMAL2: Pathfinding via Reinforcement and Imitation Multi-agent Learning-lifelong[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2666-2673. |
[22] | 闫星宇, 李大焱, 王妮娅, 等. 带障碍物惩罚因子的多机器人路径规划[J]. 系统仿真学报, 2024, 36(3): 673-685. |
Yan Xingyu, Li Dayan, Wang Niya, et al. Multi-agent Path Planning with Obstacle Penalty Factor[J]. Journal of System Simulation, 2024, 36(3): 673-685. | |
[23] | Stern Roni. Multi-agent Path Finding-an Overview[M]//Gennady S Osipov, Aleksandr I Panov, Konstantin S Yakovlev. Artificial Intelligence. Cham: Springer International Publishing, 2019: 96-115. |
[24] | Stern Roni, Sturtevant Nathan, Felner Ariel, et al. Multi-agent Pathfinding: Definitions, Variants, and Benchmarks[C]//Proceedings of the International Symposium on Combinatorial Search. Palo Alto: AAAI Press, 2019: 151-158. |
[25] | Liu Shuang, Sun Dong. Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 401-411. |
[26] | Lian Yindong, Zhang Langwen, Xie Wei, et al. An Improved Heuristic Path Planning Algorithm for Minimizing Energy Consumption in Distributed Multi-AGV Systems[C]//2020 International Symposium on Autonomous Systems (ISAS). Piscataway: IEEE, 2020: 70-75. |
[27] | Hu Kewei, Chen Zheng, Kang Hanwen, et al. 3D Vision Technologies for a Self-developed Structural External Crack Damage Recognition Robot[J]. Automation in Construction, 2024, 159: 105262. |
[28] | 唐昀超, 祁少军, 朱立学, 等. 移动机器人避障运动研究[J]. 系统仿真学报, 2024, 36(1): 1-26. |
Tang Yunchao, Qi Shaojun, Zhu Lixue, et al. Obstacle Avoidance Motion in Mobile Robotics[J]. Journal of System Simulation, 2024, 36(1): 1-26. | |
[29] | Andreychuk Anton, Yakovlev Konstantin, Surynek Pavel, et al. Multi-agent Pathfinding with Continuous Time[J]. Artificial Intelligence, 2022, 305: 103662. |
[30] | Atzmon Dor, Stern Roni, Felner Ariel, et al. Robust Multi-agent Path Finding and Executing[J]. Journal of Artificial Intelligence Research, 2020, 67: 549-579. |
[31] | 张洪琳, 吴耀华, 胡金昌, 等. 一种基于改进冲突搜索的多机器人路径规划算法[J]. 控制与决策, 2023, 38(5): 1327-1335. |
Zhang Honglin, Wu Yaohua, Hu Jinchang, et al. A Multi-robot Path Finding Algorithm Based on Improved Conflict Search[J]. Control and Decision, 2023, 38(5): 1327-1335. | |
[32] | Yu Jingjin, LaValle S. Structure and Intractability of Optimal Multi-robot Path Planning on Graphs[C]//Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence and the Twenty-Fifth Conference on Innovative Applications of Artificial Intelligence and the Fourth Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2013: 1443-1449. |
[1] | Yu Yiran, Lai Huicheng, Gao Guxue, Zhang Guo, Peng Wangyinan, Yang Longfei, Huang Junhao. Optimization Method for Multi Agricultural Machinery Collaborative Operation Based on Genetic Algorithm and A * Algorithm [J]. Journal of System Simulation, 2025, 37(9): 2397-2408. |
[2] | Zhang Kaixiang, Mao Jianlin, Wang Niya, Xu Zhihao. Multi-robot Hierarchical Collaborative k-robust Path Planning for Path Interference [J]. Journal of System Simulation, 2025, 37(8): 2074-2088. |
[3] | Wan Yuhang, Zhu Zilu, Zhong Chunfu, Liu Yongkui, Lin Tingyu, Zhang Lin. Dynamic Path Planning for Robotic Arms Based on an Improved PPO Algorithm [J]. Journal of System Simulation, 2025, 37(6): 1462-1473. |
[4] | Ye Chen, Shao Peng, Zhang Shaoping, Li Wenting, Zhou Tengming. Enhanced Artificial Gorilla Algorithm for Mobile Robot Path Planning [J]. Journal of System Simulation, 2025, 37(6): 1474-1485. |
[5] | Zhang Yan, Li Binghua, Huo Tao, Liu Rong. Research on Robot Dynamic Obstacle Avoidance Method Based on Improved A* and Dynamic Window Algorithm [J]. Journal of System Simulation, 2025, 37(6): 1555-1564. |
[6] | Zhou Xiaohui, Li Yanqiang, Wang Yong, Zhao Decai, Yang Xiaoyao. Robot Path Planning Based on Ant Colony Algorithm with Dual Heuristic Information [J]. Journal of System Simulation, 2025, 37(5): 1280-1289. |
[7] | Yu Die, Bao Baizhong, Si Yan, Duan Jian, Zhan Xiaobin, Shi Tielin. Mobile Robot Path Planning Based on Search-step Optimized A* Algorithm [J]. Journal of System Simulation, 2025, 37(4): 1041-1050. |
[8] | Zhang Sen, Dai Qiangqiang. UAV Path Planning Based on Improved Deep Deterministic Policy Gradients [J]. Journal of System Simulation, 2025, 37(4): 875-881. |
[9] | He Zhigang, Li Dayan, Wang Niya, Mao Jianlin, Wang Ning. A Multi-robot Collaborative Path Planning Algorithm with Chain Working Mode [J]. Journal of System Simulation, 2025, 37(4): 953-967. |
[10] | Lin Guijuan, Li Zihan, Wang Yu. Research on Improved A* Algorithm Path Planning Based on Global Key Point Extraction [J]. Journal of System Simulation, 2025, 37(3): 667-678. |
[11] | Bai Yuxin, Chen Zhenya, Shi Ruitao, Su Weitao, Ma Zhuoqiang, Yang Shangjin. Research on Robot Path Planning Based on Improved Harris Hawks Algorithm [J]. Journal of System Simulation, 2025, 37(3): 742-752. |
[12] | Jin Xu, Mo Yuanbin. Multi-strategy Hybrid Mountain Gazelle Optimizer for Robot Path Planning [J]. Journal of System Simulation, 2025, 37(3): 803-821. |
[13] | Li Jiongyi, Li Qiang, Zhang Xinwen, Htet Zin Myo, Cai Yongbin. Improved Bidirectional A* Quadratic Path Planning Algorithm for Mobile Robots [J]. Journal of System Simulation, 2025, 37(2): 498-507. |
[14] | Luo Yi, Deng Jia. Path Planning for Mobile Robots Based on Improved RRT-Connect and DWA Fusion [J]. Journal of System Simulation, 2025, 37(10): 2545-2556. |
[15] | Qi Bensheng, Li Yan, Miao Hongxia, Chen Jialin, Li Chenglin. Research on Path Planning Method for Autonomous Underwater Vehicles Based on Improved Informed RRT [J]. Journal of System Simulation, 2025, 37(1): 245-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||