[1] |
Zhu D, Mathews V J, Detienne D H. A Likelihood-Based Algorithm for Blind Identification of QAM and PSK Signals[J]. IEEE Transactions on Wireless Communications (S1536-1276), 2018, 17(5): 3417-3430.
|
[2] |
Chen W, Xie Z, Ma L, et al. A Faster Maximum Likelihood Modulation Classification in Flat Fading Non-gaussian Channels[J]. IEEE Communications Letters (S1089-7798), 2019, 23(3): 454-457.
|
[3] |
Ramezani-Kebrya A, Kim I M, Kim D I, et al. Likelihood-Based Modulation Classification for Multiple-antenna Receiver[J]. IEEE Transactions on Communications (S0090-6778), 2013, 61(9): 3816-3829.
|
[4] |
Teng C F, Liao C C, Chen C H, et al. Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading[C]// 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim, California, USA:IEEE, 2018: 554-558.
|
[5] |
Zhang Z, Zhong H, Liu Y. Modulation Classification in Multipath Fading Channels Using Sixth-order Cumulants and Stacked Convolutional Auto-encoders[J]. Iet Communications (S1751-8628), 2017, 11(6): 910-915.
|
[6] |
Wang Y, Liu M, Yang J, et al. Data-driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios[J]. IEEE Transactions on Vehicular Technology (S0018-9545), 2019, 68(4): 4074-4077.
|
[7] |
O'Shea T J, Corgan J, Clancy T C. Convolutional Radio Modulation Recognition Networks[C]// International Conference on Engineering Applications of Neural Networks. Aberdeen, Scotland, UK: Springer, 2016: 213-226.
|
[8] |
Liu X, Yang D, Gamal A E. Deep Neural Network Architectures for Modulation Classification[C]// 2017 51st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, California, USA: IEEE, 2017: 915-919.
|
[9] |
Mossad S, ElNainay M, Torki M. Deep Convolutional Neural Network with Multi-task Learning Scheme for Modulations Recognition[C]// 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). Tangier, Morocco: IEEE, 2019: 1644-1649.
|
[10] |
Huang L, Zhang Y, Pan W, et al. Visualizing Deep Learning-based Radio Modulation Classifier[J]. IEEE Transactions on Cognitive Communications and Networking (S2332-7731), 2020, 7(1): 47-58.
|
[11] |
Wang J, Wang W, Luo F, et al. Modulation Classification Based on Denoising Autoencoder and Convolutional Neural Network with GNU Radio[J]. The Journal of Engineering (S2051-3305), 2019(19): 6188-6191.
|
[12] |
Huang L, Pan W, Zhang Y, et al. Data Augmentation for Deep Learning-based Radio Modulation Classification[J].IEEE Access (S2169-3536), 2019, 8: 1498-1506.
|
[13] |
Zhang Z, Wang C, Gan C, et al. Automatic Modulation Classification Using Convolutional Neural Network with Features Fusion of SPWVD and BJD[J]. IEEE Transactions on Signal & Information Processing Over Networks (S2373-776X), 2019, 5(3): 469-478.
|
[14] |
张清. 机器学习在通信信号调制识别中的应用研究[D].南京: 南京邮电大学, 2020.
|
|
Zhang Qing. Research on Applications of Machine Learning in Modulation Recognition of Communication Signals[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
|
[15] |
Kumar Y, Sheoran M, Jajoo G, et al. Automatic Modulation Classification Based on Constellation Density using Deep Learning[J]. IEEE Communications Letters (S1558-2558), 2020, 24(6): 1275-1278.
|
[16] |
Luo W, Li Y, Urtasun R, et al. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks[C]//30th International Conference on Neural Information Processing Systems (NIPS'16).Barcelona: Curran Associates Inc, 2017: 4905-4913.
|
[17] |
Emam A, Shalaby M, Aboelazm M A, et al. A Comparative Study between CNN, LSTM, and CLDNN Models in The Context of Radio Modulation Classification[C]// 2020 12th International Conference on Electrical Engineering (ICEENG). Cairo, Egypt:IEEE, 2020: 190-195.
|
[18] |
West N E, O'Shea T J. Deep Architectures for Modulation Recognition[C]// 2017 IEEE International Symposium on Dynamic Spectrum Access Networks(DySPAN). Baltimore, Maryland, USA: IEEE, 2017: 1-6.
|
[19] |
Rajendran S, Meert W, Giustiniano D, et al. Deep Learning Models for Wireless Signal Classification with Distributed Low-cost Spectrum Sensors[J]. IEEE Transactions on Cognitive Communications and Networking (S2332-7731), 2018, 4(3): 433-445.
|
[20] |
Xu J, Luo C, Parr G, et al. A Spatiotemporal Multi-channel Learning Framework for Automatic Modulation Recognition[J]. IEEE Wireless Communication Letters (S2162-2337), 2020, 9(10): 1629-1632.
|