[1] Poggio T, Edelman S.A network that learns to recognize 3D objects[J]. Nature (S1476-4687), 1990, 343(6255): 263-266. [2] Khotanzad A R, Liou J H.Neural network system for 3D object recognition and pose estimation from a single arbitrary 2D view[J]. Proceedings of SPIE - The International Society for Optical Engineering (S0277-786X ), 1992, 1709: 107-118. [3] Savarese S, Li F F.3D generic object categorization, localization and pose estimation[C]// Proceedings / IEEE International Conference on Computer Vision. IEEE International Conference on Computer Vision. 2007: 1-8. [4] Fanelli G, Weise T, Gall J, et al.Real Time Head Pose Estimation from Consumer Depth Cameras[M]// Pattern Recognition. Springer Berlin Heidelberg, 2011: 101-110. [5] Shao T, Xu W, Zhou K, et al.An interactive approach to semantic modeling of indoor scenes with an RGBD camera[J]. Acm Transactions on Graphics (S0730-0301), 2012, 31(6): 439-445. [6] Lu C P, Hager G D, Mjolsness E.Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828 ), 2000, 22(6): 610-622. [7] 冷大炜, 马洪兵, 孙卫东. 基于2D-3D泛轮廓点对应的三维刚体目标的迭代姿态估计[J]. 中国科学院大学学报, 2012,29(6): 821-828. Leng D W, Ma H B, Sun W D.Rigid object based on general 2D-3D contour point Iterative pose estimation of a 3D correspondence[J]. Journal of Graduate University of Chinese Academy of Sciences, 2012, 29(6): 821-828. [8] Haralick R M, Joo H, Lee C N, et al.Pose Estimation from Corresponding Point Data[J]. IEEE Transactions on Systems Man & Cybernetics (S0018-9472), 1989, 19(6): 1-84. [9] 邱丽梅. 基于人脸特征点和线性回归的3D人脸姿态估计方法[J]. 三明学院学报, 2008, 25(4): 390-394. Qiu L M.3D Face Pose Estimation Based on Face Feature Points and Linear Regression[J]. Journal of Sanming University, 2008, 25(4): 390-394. [10] 张浩鹏, 姜志国. 基于姿态加权核回归的航天器姿态估计[J]. 北京航空航天大学学报, 2014, 40(4): 494-499. Zhang H P, Jiang Z G.Spacecraft attitude estimation based on attitude-weighted kernel regression[J]. Beijing Hangkong Hangtian Daxue Xuebao/journal of Beijing University of Aeronautics & Astronautics, 2014, 40(4): 494-499. [11] Le Cun Y, Bengio Y, Hinton G.Deep learning[J]. Nature (S1476-4687), 2015, 521(7553): 436-444. [12] Schulz H, Behnke S.Deep learning[J]. KI-Künstliche Intelligenz(S1610-1987), 2012, 26(4): 357-363. [13] Schmidhuber J.Deep learning in neural networks: An overview[J]. Neural networks, 2015, 61: 85-117. [14] Krizhevsky A, Sutskever I, Hinton G E.ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2012, 25(2): 2012. [15] Massa F, Aubry M, Marlet R.Convolutional Neural Networks for joint object detection and pose estimation: A comparative study[J]. Revista Brasileira De Farmacognosia (S0102-695X ), 2014, 19(2a): 412-417. [16] Simard P Y, Steinkraus D, Platt J C.Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis[C]//International Conference on Document Analysis and Recognition. IEEE Computer Society, 2003: 958. [17] Gkioxari G, Hariharan B, Girshick R, et al.R-CNNs for Pose Estimation and Action Detection[J]. Computer Science (S1508-2806), 2014. [18] Ouyang W, Chu X, Wang X.Multi-source Deep Learning for Human Pose Estimation[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014: 2337-2344. [19] Smith S M, Brady J M.SUSAN—a new approach to low level image processing[J]. International journal of computer vision (S0920-5691), 1997, 23(1): 45-78. [20] Su H, Qi C R, Li Y, et al.Render for CNN: Viewpoint Estimation in Images Using CNN s Trained with Rendered 3D Model Views[C]// IEEE International Conference on Computer Vision. IEEE, 2015. [21] 王春雪. 基于图像的空间目标三维姿态估计研究[D]. 中国科学院大学(工程管理与信息技术学院), 2014. Wang C L.Three dimensional pose estimation of space target based on image[D]. University of Chinese Academy of Sciences, 2014. [22] LeCun Y. LeNet-5, convolutional neural networks[J]. URL: http://yann. lecun. com/exdb/lenet, 2015. [23] Tulsiani S, Malik J.Viewpoints and keypoints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1510-1519. [24] Eslami S M A, Heess N, Williams C K I, et al. The shape boltzmann machine: a strong model of object shape[J]. International Journal of Computer Vision (S0920-5691), 2014, 107(2): 155-176. |