[1] Rossow W B, Garder L C.Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP[J]. Journal of Climate (S0894-8755), 1994, 6(12): 2341-2369. [2] Stowe L L, Davis P A, Mcclain E P.Scientific Basis and Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for the Advanced Very High Resolution Radiometer[J]. Journal of Atmospheric & Oceanic Technology (S0739-0572), 2010, 16(6): 656-681. [3] Thomas S M, Heidinger A K, Pavolonis M J.Comparison of NOAA's Operational AVHRR-Derived Cloud Amount to Other Satellite-Derived Cloud Climatologies[J]. Journal of Climate (S0894-8755), 2004, 17(24): 4805-4822. [4] Usman M, Liedl R, Shahid M A, et al.Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences (S1009-637X), 2015, 25(12): 1479-1506. [5] Wylie, D P, Menzel, W P.Two Years of Cloud Cover Statistics Using VAS[J]. Journal of Climate (S0894-8755), 1989, 2(4): 380-392. [6] R W SAUNDERS, K T KRIEBEL.An improved method for detecting clear sky and cloudy radiances from AVHRR data[J]. International Journal of Remote Sensing (S0143-1161), 1988, 9(1): 123-150. [7] Mackie S, Embury O, Old C.Generalized Bayesian cloud detection for satellite imagery. Part 1: Technique and validation for night-time imagery over land and sea[J]. International Journal of Remote Sensing (S0143-1161), 2010, 31(10): 2573-2594. [8] 郑晓辉, 徐国强, 魏荣庆. GRAPES新云量计算方案的引进和影响试验[J]. 气象, 2013, 39(1): 57-66. Zheng X H, Xu G Q, Wei R Q.Introducing and Influence Testing of the New Cloud Fraction Scheme in the GRAPES[J]. Meteorological, 2013, 39(1): 57-66. [9] Maddy E S, King T S, Sun H, et al.Using Met Op-AAVHRR Clear-Sky Measurements to Cloud-Clear Met Op-AIASI Column Radiances[J]. Journal of Atmospheric & Oceanic Technology (S0739-0572), 2011, 28(28): 1104-1116. [10] 周文君, 牛生杰, 许潇锋. 全天空成像仪云量计算方法的改进[J]. 大气科学学报, 2014, 37(3): 289-296. Zhou W J, Niu S J, Xu X F.Improvements of computational methods for cloud cover based on the total sky imager[J]. Transactions of Atmospheric Sciences, 2014, 37(3): 289-296. [11] 蔡强, 薛子育, 毛典辉, 等. 具有目标偏见的全局对比度显著性区域检测[J]. 系统仿真学报, 2015, 27(10): 2489-2496. Cai Q, Xue Z Y, Mao D H, et al.Salient Region Detection based on Object-Biased Gaussian Refinement and Global Contrast[J]. Journal of System Simulation, 2015, 27(10): 2489-2496. [12] 马芳, 张强, 郭铌, 等. 多通道卫星云图云检测方法的研究[J]. 大气科学, 2007, 31(1): 119-128. Ma F, Zhang Q, Guo N, et al.The Study of Cloud Detection with Multi-Channel Data of Satellite[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(1): 119-128. [13] Barnes B B, Hu C.A Hybrid Cloud Detection Algorithm to Improve MODIS Sea Surface Temperature Data Quality and Coverage Over the Eastern Gulf of Mexico[J]. IEEE Transactions on Geoscience & Remote Sensing (S0196-2892), 2013, 51(6): 3273-3285. [14] Li X L, Tian Y C, Xing K Z, et al.Cloud Extraction of Satellite Image Using Fuzzy C-Means Clustering Approach[J]. Applied Mechanics & Materials (S1662-7482), 2015, 743: 289-292. [15] Shi B Q, Liang J, Liu Q.Adaptive simplification of point cloud using k-means clustering[J]. Computer-Aided Design (S0010-4485), 2011, 43(8): 910-922. [16] Long C N, Sabburg J M, Calbó J, et al.Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images[J]. Journal of Atmospheric & Oceanic Technology (S0739-0572), 2006, 23(5): 633-652. [17] Gomez-Chova L, Camps-Valls G, Bruzzone L, et al.Mean Map Kernel Methods for Semisupervised Cloud Classification[J]. IEEE Transactions on Geoscience & Remote Sensing (S0196-2892), 2010, 48(1): 207-220. [18] Taravat A, Del Frate F, Cornaro C, et al.Neural Networks and Support Vector Machine Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based Images[J]. IEEE Geoscience & Remote Sensing Letters (S1545-598X), 2015, 12(3): 666-670. [19] J Alonso-Montesinos, M Martínez-Durbán, J del Sagrado, et al. The application of Bayesian network classifiers to cloud classification in satellite images[J]. Renewable Energy (S0960-1481), 2016, 97: 155-161. [20] Tian H, Zhuang B, Hua Y, et al.Depth inference with convolutional neural network[C]// Visual Communications and Image Processing Conference. USA: IEEE, 2014. |