[1] Pankaj D.Real-Time Surveillance for Critical Activity Detection in ICUs[C]. Proceedings of the Second International Conference on Computer and Communication Technologies. New Delhi: Springer, 2016. [2] Tian B, Morris B T, Tang M, et al.Hierarchical and Networked Vehicle Surveillance in ITS: A Survey[J]. IEEE Transactions on Intelligent Transportation Systems (S1558-0016), 2017, 18(1): 25-48. [3] Robertson N, Reid I.A general method for human activity recognition in video[J]. Computer Vision and Image Understanding (S1077-3142), 2006, 104(2/3): 232-248. [4] Nait-Charif H, Mc Kenna S J. Head Tracking and Action Recognition in a Smart Meeting Room[J]. IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (S2157-491X), 2003. [5] C H Anderson, P J Burt, G S van der Wal. Change detection and tracking using pyramid transform techniques[C]. Cambridge: Proc. SPIE, 1985. [6] Wren C, Azarbayejani A, Darrell T, et al.Pfinder: real-time tracking of the human body[J]. Transaction on Pattern Analysis and Machine Intelligence (S1939-3539), 1996. [7] Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking[C]. Proc Computer Vision & Pattern Recognition, IEEE, 1999. [8] Elgammal A, Harwood D, Davis L.Non-parametric Model for Background Subtraction[C]. European Conference on Computer Vision. Berlin: Springer, 2000. [9] Barnich O, Droogenbroeck M V.VIBE: A powerful random technique to estimate the background in video sequences[C]. International Conference on Acoustics, Speech and Signal Processing. Taipei: IEEE, 2009. [10] Candes E, Li X, Ma Y, et al.Robust principal component analysis[J]. Journal of the ACM (S1557-735X), 2011, 58(3): 11. [11] Ding X.Bayesian Robust Principal Component Analysis[J]. IEEE Transactions on Image Processing (S1941-0042), 2011, 20(12): 3419. [12] Jun He.Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video[C]. CVPR. Providence: IEEE, 2012, 157: 1568-1575. [13] Horn B K P, Schunck B G. Determining Optical Flow[C]. Artificial Intelligence, Washington, 1981. [14] Lucas B D, Kanade T.An iterative image registration technique with an application to stereo vision[C]. International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1981. [15] Bouguet J Y.Pyramidal implementation of the affine Lucas-Kanade feature tracker description of the algorithm[R]. Intel Corporation, 2001. [16] Dosovitskiy A.Flownet: Learning optical ?ow with convolutional networks[C]. ICCV, 2015. [17] Ranjan A, Black M J.Optical Flow Estimation using a Spatial Pyramid Network[C]. CVPR, 2016. [18] Ahmadi A, Patras I.Unsupervised convolutional neural networks for motion estimation[C]. ICIP. Phoenix: IEEE, 2016. [19] Aubry M.Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models[C]. CVPR. Columbus: IEEE, 2014. [20] Goyette N, Jodoin P M, Porikli F, et al.Changedetection. net: A new change detection benchmark dataset[C]. CVPR. Providence: IEEE, 2012. [21] Li L.Statistical modeling of complex backgrounds for foreground object detection[J]. IEEE Transactions on Image Processing (S1941-0042), 2004, 13(11): 1459. [22] Zhou X, Yang C, Yu W.Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation[J]. Transactions on Pattern Analysis and Machine Intelligence (S1939-3539), 2013, 35(3): 597-610. |