[1] Lu Y, Xiang P, Dong P, et al.Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis (S1350-6307), 2018, 89: 222-241. [2] Iglesias E L, Thompson D J, Smith M, et al.Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise[J]. International Journal of Rail Transportation (S2324-8378), 2017, 5(2): 87-109. [3] Qin N, Jin W D, Huang J, et al. High Speed Train Bogie Fault Signal Analysis Based on Wavelet Entropy Feature[J]. Advanced Materials Research (S1662-8985), 2013, 753/754/755: 2286-2289. [4] Wu Z, Jin W, Qin N.Fault feature analysis of high-speed train suspension system based on multivariate multi-scale sample entropy[C]//2016 35th Chinese Control Conference (CCC), 2016: 3913-3918. [5] Du J, Jin W, Cai Z, et al.A New Feature Evaluation Algorithm and Its Application to Fault of High-Speed Railway[C]//Proceedings of the Second International Conference on Intelligent Transportation. Springer, Singapore, 2016: 1-14. [6] Lecun Y, Bengio Y, Hinton G.Deep learning[J]. Nature (S1476-4687), 2015, 521(7553): 436-444. [7] Jia F, Lei Y, Lin J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing (S0888-3270), 2016, 72/73(Supplement C): 303-315. [8] Janssens O, Slavkovikj V, Vervisch B, et al.Convolutional Neural Network Based Fault Detection for Rotating Machinery[J]. Journal of Sound and Vibration (S0022-460X), 2016, 377(Supplement C): 331-345. [9] Karim F, Majumdar S, Darabi H, et al.LSTM fully convolutional networks for time series classification[J]. IEEE Access (S2169-3536), 2018, 6: 1662-1669. [10] Chen Z, Li W.Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2017, 66(7): 1693-1702. [11] Jing L, Wang T, Zhao M, et al.An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox[J]. Sensors (S1424-8220), 2017, 17(2): 414-415. [12] Hu H, Tang B, Gong X, et al.Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks[J]. IEEE Transactions on Industrial Informatics (S1551-3203), 2017, 13(4): 2106-2116. [13] Zhao Y, Guo Z H, Yan J M.Vibration signal analysis and fault diagnosis of bogies of the high-speed train based on deep neural networks[J]. Journal of Vibroengineering (S2538-8460), 2017, 19(4): 2456-2474. [14] Noh H, You T, Mun J, et al.Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization[G]//Guyon I, Luxburg U V, Bengio S, et al. Advances in Neural Information Processing Systems 30. Curran Associates, Inc., 2017: 5109-5118. [15] Kingma D P, Welling M. Auto-encoding variational bayes [J]. arXiv preprint (S2331-8422) arXiv:1312.6114, 2013. [16] Zheng Y.Methodologies for Cross-Domain Data Fusion: An Overview[J]. IEEE Transactions on Big Data (S2332-7790), 2015, 1(1): 16-34. [17] Stutz D.Understanding convolutional neural networks [R]. InSeminar Report, Fakultät für Mathematik, Informatik und Naturwissenschaften Lehr-und Forschungsgebiet Informatik VIII Computer Vision, 2014. [18] 鞠萍华. 旋转机械早期故障特征提取的时频分析方法研究[D]. 重庆: 重庆大学, 2010. Ju Pinghua.Research on the Time-frequency Analysis Method to Extract Early Fault Features of Rotating Machinery[D]. Chongqing: Chongqing University, 2010. |