[1] 中华人民共和国国家卫生健康委员会规划发展与信息化司. 2013 年我国卫生和计划生育事业发展统计公报[EB/OL].(2014-5-30). http://www.nhc.gov.cn/guihuaxxs/s10742/201405/886f82dafa344c3097f1d16581a1bea2.shtml. [2] Chen H, Shen C, Qin J, et al. Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 515-522. [3] Bruno M A, Walker E A, Abujudeh H H. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction[J]. Radiographics(S0271-5333), 2015, 35(6): 1668-1676. [4] Jiang X, Pang Y, Sun M, et al. Cascaded subpatch networks for effective CNNs[J]. IEEE Transactions on Neural Networks and Learning Systems(S2162-237X), 2018, 29(7): 2684-2694. [5] Wang X, Peng Y, Lu L, et al. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2017: 2097-2106. [6] National institues of health. Open-i: Open Access Biomedical Image Search Engine [EB/OL]. (2018-9-30). https://openi.nlm.nih.gov. [7] Shigehiko K, Kunio D. Computer-aided diagnosis in chest radiography[J]. Computerized Medical Imaging and Graphics(S0895-6111), 2007, 31(4/5): 212-223. [8] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. New York, NY: Curran Associates., 2012: 1097-1105. [9] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2014-09-10) https://arxiv.org/abs/1409.1556. [10] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2015: 1-9. [11] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2016: 770-778. [12] Rajpurkar P, Irvin J, Zhu K, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning [EB/OL]. (2017-12-25) https://arxiv.org/abs/1711.05225. [13] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2017: 4700-4708. [14] Yao L, Poblenz E, Dagunts D, et al. Learning to diagnose from scratch by exploiting dependencies among labels [EB/OL]. (2017-10-28) https://arxiv.org/abs/1710.10501. [15] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation(S0899-7667), 1997, 9(8): 1735-1780. [16] Kumar P, Grewal M, Srivastava M M. Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs[C]//International Conference Image Analysis and Recognition. Cham: Springer, 2018: 546-552. [17] Guan Q, Huang Y, Zhong Z, et al. Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification [EB/OL]. (2018-01-30) https://arxiv.org/abs/1801.09927. [18] Baltruschat I M, Nickisch H, Grass M, et al. Comparison of deep learning approaches for multi-label chest X-ray classification[J]. Scientific reports(S2045-2322), 2019, 9(1): 1-10. [19] Shin H C, Roberts K, Lu L, et al. Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2016: 2497-2506. [20] Wang X, Peng Y, Lu L, et al. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2018: 9049-9058. [21] Guendel S, Grbic S, Georgescu B, et al. Learning to recognize abnormalities in chest x-rays with location-aware dense networks[C]//Iberoamerican Congress on Pattern Recognition. Cham: Springer, 2018: 757-765. [22] Islam M T, Aowal M A, Minhaz A T, et al. Abnormality detection and localization in chest x-rays using deep convolutional neural networks [EB/OL]. (2017-05-27) https://arxiv.org/abs/1705.09850. |