[1] Camps-Valls G, Bruzzone L.Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing (S0196-2892), 2005, 43(6): 1351-1362. [2] Cao X, Xu L, Meng D, et al.Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification[J]. Neurocomputing (S0925-2312), 2017, 226(C): 90-100. [3] Wang Q, Lin J, Yuan Y.Salient band selection for hyperspectral image classification via manifold ranking[J]. IEEE transactions on neural networks and learning systems (S2162-237X), 2016, 27(6): 1279-1289. [4] Ghamisi P, Benediktsson J A, Sveinsson J R.Automatic Spectral-Spatial Classification Framework Based on Attribute Profiles and Supervised Feature Extraction[J]. IEEE Transactions on Geoscience & Remote Sensing (S0196-2892), 2014, 52(9): 5771-5782. [5] Xia J, Chanussot J, Du P, et al.Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples[J]. IEEE Transactions on Geoscience and Remote Sensing (S0196-2892), 2016, 54(3): 1519-1531. [6] Wang W, Shen J, Shao L.Video Salient Object Detection via Fully Convolutional Networks[J]. IEEE Transactions on Image Processing, 2017, 27(1): 38-49. [7] W Wang, J Shen.Deep cropping via attention box prediction and aesthetics assessment[C]//The IEEE International Conference on Computer Vision(ICCV), Piscataway: NJ, 2017: 2186-2194. [8] He K, Zhang X, Ren S, et al.Deep Residual Learning for Image Recognition[J]. 2015:770-778. [9] Krizhevsky A, Sutskever I, Hinton G E.ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012: 1097-1105. [10] Hu W, Huang Y, Wei L, et al.Deep Convolutional Neural Networks for Hyperspectral Image Classification[J]. Journal of Sensors (S1530-437X), 2015, 2015(2): 1-12. [11] Chen Y, Lin Z, Zhao X, et al.Deep Learning-Based Classification of Hyperspectral Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing (S1939-1404), 2014, 7(6): 2094-2107. [12] Ma X, Geng J, Wang H.Hyperspectral image classification via contextual deep learning[J]. Eurasip Journal on Image & Video Processing (S1687-5176), 2015, 2015(1): 20. [13] 霍雷刚, 冯象初. 基于主成分分析和字典学习的高光谱遥感图像去噪方法[J]. 电子与信息学报, 2014, 36(11): 2723-2729. Huo Leigang, Feng Xiangchu.Denoising of Hyperspectral Remote Sensing Image Based on Principal Component Analysis and Dictionary Learning[J]. Journal of Electronics and Information Technology, 2014, 36(11): 2723-2729. [14] Ioffe S, Szegedy C.Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456. [15] Clevert D A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (elus)[J]. arXiv preprint arXiv:1511.07289, 2015. [16] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. |