[1] 董路影. 《中国可再生能源展望2018》及《可再生能源市场报告2018》成果联合发布[J]. 中国能源, 2018, 40(12): 44. [2] Blonbou R.Very Short-term Wind Power Forecasting with Neural Networks and Adaptive Bayesian Learning[J]. Renewable Energy (S0960-1481), 2011, 36(3): 1118-1124. [3] Zhe S, Jiang Y, Zhang Z J.Short-term Wind Speed Forecasting with Markov-switching Model[J]. Applied Energy (S0306-2619), 2014, 5(130): 103-112. [4] Yang L, He M, Zhang J.Support-vector-machine- enhanced Markov Model for Short-term Wind Power Forecast[J]. IEEE Transactions on Sustainable Energy (S1949-3029), 2015, 6(3): 791-799. [5] Huang C M, Kuo C J, Huang Y C.Short-term Wind Power Forecasting and Uncertainty Analysis Using a Hybrid Intelligent Method[J]. IET Renewable Power Generation (S1752-1416), 2017, 11(5): 678-687. [6] Medina S V, Ajenjo U P.Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output[J]. Journal of Modern Power Systems and Clean Energy (S2196-5625), 2020, 8(3): 484-490. [7] Shen W, Jiang N, Li N.An EMD-RF Based Short-term Wind Power Forecasting Method[C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway, NJ: IEEE, 2018: 283-288. [8] Xu A, Yang T, Ji J, et al.Application of Cluster Analysis in Short-term Wind Power Forecasting Model[J]. The Journal of Engineering (S2051-3305), 2019, 9: 5423-5426. [9] 何东, 刘瑞叶. 基于主成分分析的神经网络动态集成风功率超短期预测[J]. 电力系统保护与控制, 2013, 41(4): 50-54. He Dong, Liu Ruiye.Ultra-short-term Wind Power Prediction Using ANN Ensemble Based on the Principal Components Analysis[J]. Power System Protection and Control, 2013, 41(4): 50-54. [10] 许童羽, 马艺铭, 曹英丽, 等. 基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测[J]. 电力系统保护与控制, 2016, 44(22): 90-95. Xu Tongyu, Ma Yiming, Cao Yingli, et al.Short Term Forecasting of Photovoltaic Output Power Based on Principal Component Analysis And Genetic Optimization of BP Neural Network[J]. Power System Protection and Control, 2016, 44(22): 90-95. [11] Lahouar A, Slama J B H. Hour-ahead Wind Power Forecast Based on Random Forests[J]. Renewable Energy (S0960-1481), 2017, 3(109): 529-541. [12] Zhou Z, Li X, Wu H.Wind Power Prediction based on Random Forests[C]//4th International Conference on Electrical & Electronics Engineering and Computer Science. Piscataway, NJ: IEEE, 2016. [13] Sun Z X, Zhao S S, Zhang J X.Short-term Wind Power Forecasting on Multiple Scales Using Vmd Decomposition, K-Means Clustering and Lstm Principal Computing[J]. IEEE Access (S2169-3536), 2019, 7: 166917-166929. [14] Yang L, Deng M.Based on K-means and Fuzzy K- means Algorithm Classification of Precipitation[C]//2010 International Symposium on Computational Intelligence and Design. Piscataway, NJ: IEEE, 2010: 218-221. [15] Zhang Y, Xiong Z, Mao J, et al.The study of parallel k-means algorithm[C]//2006 6th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2006: 5868-5871. [16] Yi F, Moon I.Extended K-means algorithm[C]//2013 5th International Conference on Intelligent Human- Machine Systems and Cybernetics. Piscataway, NJ: IEEE, 2013: 263-266. |