[1] Rafael C G, Richard E W.数字图像处理[M]. 3版. 北京: 电子工业出版社, 2014: 97-101. Rafael C G, Richard E W.Digital Image Processing [M]. 3rd ed. Beijing: Publishing House of Electronic Industry, 2014: 97-101. [2] Chao D, Chen C L, He K M, et al.Learning a Deep Convolutional Network for Image Super-Resolution[C]// European Conference on Computer Vision (ECCV). Switzerland: Springer International Publishing, 2014: 184-199. [3] 范明明, 池源, 张铭津, 等. 基于深度学习的芯片图像超分辨率重建[J]. 模式识别与人工智能, 2019, 32(4): 353-360. Fan Mingming, Chi Yuan, Zhang Mingjin, et al.Super-resolution Reconstruction of Chip Images Based on Deep Learning[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(4): 353-360. [4] Goodfellow I J, Poutget-Abadie J, Mirza M, et al.Generative Adversarial Nets[C]// The 27th International Conference on Neural Information Processing Systems. Montreal. CANADA: NIPS, 2014:2672-2680. [5] Rezende D J, Mohamed S, Wierstra D.Stochastic Back-propagation and Approximate Inference in Deep Generative Models[C]// International Conference on Machine Learning (ICML). Beijing: ICML, 2014: 1-9. [6] Hinton G E, Osindero S, Teh Y W.A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation (S0899-7667), 2006, 18(7): 1527-1554. [7] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络 GAN 的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. Wang Kunfeng, Gou Chao, Duan Yanjie, et al.Research Progress and Prospect of Generative Adversarial Networks[J]. Acta Automatica Sinica, 2017, 43(3): 321-332. [8] 林懿伦, 戴星原, 李力, 等. 人工智能研究的新前线:生成式对抗网络[J]. 自动化学报, 2018, 44(5): 775-792. Lin Yilun, Dai Xingyuan, Li Li, et al.A New Frontier for Artificial Intelligence Research: Generative Adversarial Networks[J]. Acta Automatica Sinica, 2018, 44(5): 775-792. [9] Ledig C, Theis L, Huszar F, et al.Photo-realistic Single Image Super-resolution Using a Generative Adversarial Network[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 105-114. [10] Isola P, Zhu J Y, Zhou T, et al.Image-to-Image Translation with Conditional Adversarial Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 5967-5976. [11] Zhu J Y, Park T, Isola P, et al.Unpaired Image-to-Image Translation Using Cycle-consistent Adversarial Networks[C]// IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 2242-2251. [12] Choi Y, Choi M, Kim M, et al.StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA: IEEE, 2018: 8789-8797. [13] He Z L, Zuo W M, Kan M N, et al.AttGAN: Facial Attribute Editing by Only Changing What You Want[J]. IEEE Transactions on Image Processing (S1057-7149), 2019, 28(11): 5464-5478. [14] Qina R, Tan R T, Yang W H, et al.Attentive Generative Adversarial Network for Raindrop Removal From a Single Image[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA: IEEE, 2018: 2482-2491. [15] Mirza M, Osindero S.Conditional Generative Adversarial nets[C]// The 18th Annual Conference of the International Speech Communication Association (INTERSPEECH). Stockholm, Sweden: ISCA, 2017: 2814-2818. [16] Wang H, Wang Y T, Zhou Z, et al.CosFace: Large Margin Cosine Loss for Deep Face Recognition[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA: IEEE, 2018: 5265-5274. [17] Wang Y J, Li J H, Lu Yi, et al.Image Quality Evaluation Based on Image Weighted Separating Block Peak Signal to Noise Ratio[C]// 2003 International Conference on Neural Networks and Signal Processing (ICNNSP'03). Nanjing: IEEE, 2003: 994-997. [18] Wang Z, Bovik A C, Sheikh H R, et al.Image Quality Assessment: from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing (S1057-7149), 2004, 13(4): 600-612. |