系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3075-3086.doi: 10.16182/j.issn1004731x.joss.24-0721

• 论文 • 上一篇    

改进PID搜索算法的山地环境无人机路径规划

彭艺1,2, 雷云揆1,2, 杨青青1,2, 李辉1,2, 王健明1,2   

  1. 1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500
    2.昆明理工大学 云南省计算机重点实验室,云南 昆明 650500
  • 收稿日期:2024-07-04 修回日期:2024-08-29 出版日期:2025-12-26 发布日期:2025-12-24
  • 通讯作者: 杨青青
  • 第一作者简介:彭艺(1976-),女,教授,博士,研究方向为无人机路径规划、无线通信。
  • 基金资助:
    国家自然科学基金(61761025);云南省基础研究计划重点项目(202401AS070105)

Improved PID Search Algorithm for UAV Path Planning in Mountainous Environments

Peng Yi1,2, Lei Yunkui1,2, Yang Qingqing1,2, Li Hui1,2, Wang Jianming1,2   

  1. 1.School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
    2.Yunnan Provincial Key Laboratory of Computer Science, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2024-07-04 Revised:2024-08-29 Online:2025-12-26 Published:2025-12-24
  • Contact: Yang Qingqing

摘要:

针对无人机在山地环境下路径规划时存在求解难度大、寻优效果不佳,PID搜索算法(PID-based search algorithm,PSA)在该场景中寻优精度低、收敛速度慢等问题,提出了一种改进PID搜索算法(IPSA)的山地无人机路径规划方法。引入佳点集使种群分布更均匀,增加了种群的多样性,提高算法的全局搜索能力;利用Q-learning算法将动作空间对应为PID参数调节的策略,设计了探索率因子,提高算法对不同策略的探索性和求解能力;加入透镜成像反向学习机制,帮助算法跳出局部最优,加快收敛速度。实验结果表明:与PSA算法相比,IPSA算法在稀疏环境和复杂环境下的收敛精度分别提高了3.5%和3.5%,稳定性分别提高了33.1%和53.7%,提升了山地环境中无人机路径规划的能力。

关键词: 无人机, 路径规划, PID搜索算法, 佳点集, Q-learning, 透镜成像反向学习

Abstract:

To address the challenges of UAV path planning in mountainous environments, including high computational complexity and suboptimal optimization performance, and the disadvantages of the PID-based search algorithm, such as low optimization accuracy and slow convergence rate, this paper proposed an improved PID search algorithm (IPSA). The method introduced a good point set to ensure a more uniform population distribution, thereby enhancing population diversity and global search capability. The Q-learning algorithm was employed to adapt PID parameter adjustments, incorporating an exploration rate factor to further improve the algorithm's exploration and computational capabilities. A lens imaging opposition-based learning mechanism was also integrated to help the algorithm effectively avoid local optima and accelerate the convergence rate. Experimental results have demonstrated that compared with the PSA algorithm, the convergence accuracy of the IPSA algorithm increases by 3.5% in sparse environments and by 3.5% in complex environments, while the stability increases by 33.1% and 53.7% respectively, thereby significantly boosting UAV path planning capability in mountainous environments.

Key words: UAV, path planning, PID search algorithm, good point set, Q-learning, lens imaging opposition-based learning

中图分类号: