系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2074-2088.doi: 10.16182/j.issn1004731x.joss.24-0229

• 论文 • 上一篇    

针对路径干扰的多机器人分层协作k鲁棒路径规划

张凯翔1, 毛剑琳2, 王妮娅2, 徐志昊2   

  1. 1.昆明理工大学 机电工程学院,云南 昆明 650500
    2.昆明理工大学 信息工程与自动化学院,云南 昆明 650500
  • 收稿日期:2024-03-12 修回日期:2024-04-02 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 毛剑琳
  • 第一作者简介:张凯翔(1993-),男,博士生,研究方向为移动机器人路径规划。
  • 基金资助:
    国家自然科学基金(62263017)

Multi-robot Hierarchical Collaborative k-robust Path Planning for Path Interference

Zhang Kaixiang1, Mao Jianlin2, Wang Niya2, Xu Zhihao2   

  1. 1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
    2.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2024-03-12 Revised:2024-04-02 Online:2025-08-20 Published:2025-08-26
  • Contact: Mao Jianlin

摘要:

为在干扰环境下规划多机器人的无冲突路径,基于多机器人k鲁棒路径规划,设计了多机器人分层协作k鲁棒路径规划框架。在优先级优化层,针对求解顺序引发的起步困境问题,根据封闭因子确定多机器人路径求解顺序;在多机鲁棒协调层,以提高求解效率为目标,引入安全区间作为k鲁棒和无碰撞设计的基础,给出k鲁棒意义下的多机器人无碰撞路径约束;在核心求解层,采用动态的阻力因子,在规划时引导高优先级机器人规避低优先级机器人的起步区域。实验结果表明:所提算法能够以较小的路径损耗有效降低k鲁棒起步困境的影响,k鲁棒路径求解成功率较现有先进算法平均可提高39%以上。

关键词: 多机器人系统, 路径规划, 鲁棒规划, 延时, 干扰

Abstract:

To plan collision-free paths for multiple robots in interference environments, based on the multi-robotk-robust path planning, this paper designed a multi-robot hierarchical collaborative k-robust path planning framework. In the priority optimization layer, in response to the starting predicament caused by the solution sequence, the multi-robot path solving sequence was determined based on the closure factor. In the multi-robot robust coordination layer, with the goal of improving solution efficiency, a safety interval was introduced as the basis for the design of k-robustness and collision-free avoidance. A collision-free path constraint for multiple robots in the sense of k-robustness was given. In the core solution layer, dynamic resistance factors were used to guide high priority robots to avoid the starting area of low priority robots during planning. The test results show that the proposed algorithm can effectively reduce the impact ofk-robust starting predicament with small path loss, and the success rate ofk-robust path solutions can be improved by more than 39% on average compared to existing advanced algorithms.

Key words: multi-robot system, path planning, robust planning, delay, interference

中图分类号: