系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3087-3099.doi: 10.16182/j.issn1004731x.joss.25-FZ0629
• 论文 • 上一篇
张文康, 孙霄峰, 钟一平, 尹勇
收稿日期:2025-07-01
修回日期:2025-10-02
出版日期:2025-12-26
发布日期:2025-12-24
通讯作者:
孙霄峰
第一作者简介:张文康(2000-),男,博士生,研究方向为航海仿真、人工智能。
基金资助:Zhang Wenkang, Sun Xiaofeng, Zhong Yiping, Yin Yong
Received:2025-07-01
Revised:2025-10-02
Online:2025-12-26
Published:2025-12-24
Contact:
Sun Xiaofeng
摘要:
针对利用计算流体力学仿真方法进行船舶液舱晃荡计算资源消耗大的问题,提出了一种数据驱动的数值仿真模型。以图神经网络为基础构建而成,该网络采用编码器-处理器-解码器架构。编码器提取前5个时间步的流体粒子特征,处理器学习流体潜在的运动规律并更新特征,解码器预测下一时刻粒子特征。处理器结合自注意力机制,使模型能够动态分配邻接权重并突出不规则舱壁区域的影响。利用移动粒子半隐式法生成模型所需训练数据,针对缩尺压载液舱横摇工况开展数值仿真。结果表明:该模型的仿真精度以平均绝对误差为评价指标相较传统图神经网络提升了50%以上,计算效率较移动粒子半隐式法提升了2个数量级,为船舶液舱晃荡数值仿真提供了兼顾精度与效率的新方法。
中图分类号:
张文康,孙霄峰,钟一平等 . 基于图神经网络的船舶液舱晃荡数值仿真[J]. 系统仿真学报, 2025, 37(12): 3087-3099.
Zhang Wenkang,Sun Xiaofeng,Zhong Yiping,et al . Numerical Simulations of Ship Liquid Tank Sloshing Based on Graph Neural Networks[J]. Journal of System Simulation, 2025, 37(12): 3087-3099.
| [1] | Ma Bole, Yue Baozeng, Yan Sen, et al. Numerical and Experimental Study on the Nonlinear Liquid Sloshing in Cassini Tank[J]. Journal of Spacecraft and Rockets, 2025, 62(2): 466-476. |
| [2] | Belakroum R, Kadja M, Mai T H, et al. An Efficient Passive Technique for Reducing Sloshing in Rectangular Tanks Partially Filled with Liquid[J]. Mechanics Research Communications, 2010, 37(3): 341-346. |
| [3] | Qi Yan, Söding Heinrich, Stöcker Jasmin, et al. Prediction of Waves in Tanks Excited by Ship Motion and Moving Walls with a Three-dimensional Fully Linear Finite Difference Approach[J]. Ocean Engineering, 2024, 310, Part 1: 118648. |
| [4] | Buldakov E. Lagrangian Modelling of Fluid Sloshing in Moving Tanks[J]. Journal of Fluids and Structures, 2014, 45: 1-14. |
| [5] | 朱仁庆, 侯玲. LNG船液舱晃荡数值模拟[J]. 江苏科技大学学报(自然科学版), 2010, 24(1): 1-6. |
| Zhu Renqing, Hou Ling. Numerical Simulation of Liquid Sloshing in the Tanks of LNG Carrier[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2010, 24(1): 1-6. | |
| [6] | Chen Y F, Huang C, Yan W H, et al. Numerical Study on the Sloshing Behaviors of Dual Liquid Tanks with Gas Inflow[J]. Journal of Applied Fluid Mechanics, 2024, 17(9): 1885-1895. |
| [7] | Jiao Jialong, Ding Shang, Zhao Mingming, et al. Simulation of LNG Ship's Motions Coupled with Tank Sloshing in Regular Waves by DualSPHysics[J]. Ocean Engineering, 2024, 312, Part 2: 119148. |
| [8] | 张之凡, 王越美, 李昌良, 等. 基于SPH方法的二维液舱晃荡特性研究[J]. 船舶力学, 2024, 28(5): 676-688. |
| Zhang Zhifan, Wang Yuemei, Li Changliang, et al. Sloshing Characteristics of a 2D Rectangular Tank Based on SPH Method[J]. Journal of Ship Mechanics, 2024, 28(5): 676-688. | |
| [9] | Sun Xiaofeng, Zhong Yiping, Bian Feng, et al. Numerical Computation of Sloshing-Induced Force in Complex Ship Tanks Under the Excitation of Ship Rolling Motion Based on the MPS Method[J]. Applied Sciences, 2022, 12(10): 5130. |
| [10] | Huang Congyi, Wang Jifei, Zhao Weiwen, et al. Numerical Simulation of Liquid Sloshing in a Spherical Tank by MPS Method[J]. Journal of Hydrodynamics, 2024, 36(2): 232-240. |
| [11] | 金鑫, 王宇圣, 张福贵, 等. 基于神经网络的流体晃荡波高和压强的预测研究[J]. 船舶力学, 2025, 29(3): 388-399. |
| Jin Xin, Wang Yusheng, Zhang Fugui, et al. Predictions of Wave Height and Pressure Induced by Liquid Sloshing Based on Neural Network[J]. Journal of Ship Mechanics, 2025, 29(3): 388-399. | |
| [12] | Li Huan, Zhang Xinshuo, Yang Xiufeng. Numerical Study of Liquid Sloshing Using Smoothed Particle Hydrodynamics with Adaptive Spatial Resolution[J]. Engineering Analysis with Boundary Elements, 2024, 159: 272-287. |
| [13] | Hossein Goudarzvand Chegini, Zarepour Gholamreza. Utilizing Artificial Neural Network for Load Prediction Caused by Fluid Sloshing in Tanks[J]. Geofluids, 2021, 2021(1): 3537542. |
| [14] | Hossein Goudarzvand Chegini, Zarepour Gholamreza. Numerical Study of Rectangular Tank with Sloshing Fluid and Simulation of the Model Using a Machine Learning Method[J]. Geofluids, 2022, 2022(1): 4121956. |
| [15] | Zhang Ningbo, Yan Shiqiang, Ma Qingwei, et al. A CNN-supported Lagrangian ISPH Model for Free Surface Flow[J]. Applied Ocean Research, 2023, 136: 103587. |
| [16] | Jong Kim Ki, Kim Daegyoum. Prediction of Sloshing Pressure Using Image-based Deep Learning[J]. Ocean Engineering, 2024, 303: 117718. |
| [17] | Zhang Chongwei, Tan Jie, Ning Dezhi. Machine Learning Strategy for Viscous Calibration of Fully-nonlinear Liquid Sloshing Simulation in FLNG Tanks[J]. Applied Ocean Research, 2021, 114: 102737. |
| [18] | Zhang Songtao, Li Chenyang, Zhao Peng, et al. LSTM-based Prediction Control of Free-surface Tank[C]//2023 International Conference on Marine Equipment & Technology and Sustainable Development. Singapore: Springer Nature Singapore, 2023: 1013-1028. |
| [19] | Pfaff T, Fortunato M, Sanchez-Gonzalez A, et al. Learning Mesh-Based Simulation with Graph Networks[EB/OL]. (2021-06-18) [2025-05-18]. . |
| [20] | 祝晓, 王子豪, 罗文清, 等. 基于数据驱动的液舱晃荡的低维表达方法研究[J]. 江苏船舶, 2024, 41(5): 12-15. |
| Zhu Xiao, Wang Zihao, Luo Wenqing, et al. Research on Low Dimensional Expression Method of Liquid Tank Oscillation Based on a Data-driven Approach[J]. Jiangsu Ship, 2024, 41(5): 12-15. | |
| [21] | Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. Learning to Simulate Complex Physics with Graph Networks[C]//Proceedings of the 37th International Conference on Machine Learning. Chia Laguna Resort, Italy: PMLR, 2020: 8459-8468. |
| [22] | Li Yunzhu, Wu Jiajun, Tedrake R, et al. Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids[EB/OL]. (2019-04-18) [2025-05-26]. . |
| [23] | Deng Yangyu, Zhang Di, Cao Ze, et al. Spatio-temporal Water Height Prediction for Dam Break Flows Using Deep Learning[J]. Ocean Engineering, 2024, 302: 117567. |
| [24] | SDARI. Final Loading Manual of 400,000 Dwt Ore Carrier "Pacific Vision" [R]. Shanghai: Shanghai Merchant Ship Design and Research Institute, 2019. |
| [1] | 马仑, 杨跃, 王迨贺, 廖桂生, 李幸. 联合自注意力机制与权值共享的人体行为识别模型[J]. 系统仿真学报, 2025, 37(9): 2409-2419. |
| [2] | 吕金虎, 蒋弘毅, 刘德元, 谭少林. 基于图神经网络的复杂系统建模与仿真[J]. 系统仿真学报, 2025, 37(7): 1624-1638. |
| [3] | 王子怡, 张凯, 钱殿伟, 刘玉贞. 一种基于DRL的分布式装备体系优选方法[J]. 系统仿真学报, 2025, 37(6): 1565-1573. |
| [4] | 李想, 任晓羽, 周永兵, 张剑. 基于改进D3QN算法的随机工时下柔性综合调度问题研究[J]. 系统仿真学报, 2025, 37(2): 474-486. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 唐金琳, 王艳, 刘相, 王团结, 纪志成. 基于神经网络-遗传规划的布尔网络模型优化[J]. 系统仿真学报, 2025, 37(11): 2812-2825. |
| [7] | 刘金辉, 陈孟元, 韩朋朋, 陈何宝, 张玉坤. 面向移动机器人大视角运动的图神经网络视觉SLAM算法[J]. 系统仿真学报, 2024, 36(5): 1043-1060. |
| [8] | 李健, 李洹坤, 何鹏博, 王化北, 徐莉萍, 何奎. 协同智能体强化学习算法的柔性作业车间调度方法研究[J]. 系统仿真学报, 2024, 36(11): 2699-2711. |
| [9] | 徐忠锴, 刘艳玲, 盛晓娟, 汪超, 柯文俊. 基于改进YOLOv5的变电站典型缺陷自动检测算法[J]. 系统仿真学报, 2024, 36(11): 2604-2615. |
| [10] | 徐银, 蒲云, 刘海旭, 谭一帆. 考虑后视效应和速度差的智能驾驶模型仿真[J]. 系统仿真学报, 2023, 35(7): 1562-1571. |
| [11] | 王霄汉, 张霖, 任磊, 谢堃钰, 王昆玉, 叶飞, 陈真. 基于强化学习的车间调度问题研究简述[J]. 系统仿真学报, 2021, 33(12): 2782-2791. |
| [12] | 刘爽, 吕超, 饶勇, 王世明. 基于仿真的鲨鱼鳍结构性能分析与研究[J]. 系统仿真学报, 2018, 30(6): 2398-2404. |
| [13] | 徐建新, 袁家俊, 邓云飞. 2024航空铝合金固支靶板分层数抗鸟撞性能研究[J]. 系统仿真学报, 2018, 30(10): 3914-3922. |
| [14] | 李冰, 王星, 轩华, 王薛苑. 嵌入备件库存的设备运维闭环控制系统仿真研究[J]. 系统仿真学报, 2018, 30(10): 3817-3825. |
| [15] | 任斌, 陈纯毅, 杨华民. 大气湍流光波传输数值仿真技术研究综述[J]. 系统仿真学报, 2017, 29(8): 1631-1640. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||