系统仿真学报 ›› 2025, Vol. 37 ›› Issue (3): 667-678.doi: 10.16182/j.issn1004731x.joss.23-1375

• 论文 • 上一篇    

基于全局关键点提取的改进A*算法全局路径规划研究

林桂娟, 李子涵, 王宇   

  1. 厦门理工学院 机械与汽车工程学院,福建 厦门 361024
  • 收稿日期:2023-11-14 修回日期:2023-12-09 出版日期:2025-03-17 发布日期:2025-03-21
  • 通讯作者: 李子涵
  • 第一作者简介:林桂娟(1978-),女,副教授,博士,研究方向为智能材料应用、智能制造及机电工程。
  • 基金资助:
    福建省科技厅自然科学基金面上项目(2020J01130801)

Research on Improved A* Algorithm Path Planning Based on Global Key Point Extraction

Lin Guijuan, Li Zihan, Wang Yu   

  1. College of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
  • Received:2023-11-14 Revised:2023-12-09 Online:2025-03-17 Published:2025-03-21
  • Contact: Li Zihan

摘要:

为了解决在较大且复杂场景下,传统A*算法寻路会遍历大量节点、计算时间长、易陷入U型陷阱等问题,结合跳点搜索(jump point search,JPS),提出一种改进A*算法,利用图像处理技术对全局地图进行关键点提取对全局地图进行前处理,获取与障碍物对角相距1格的角点,构建关键点列表,提出全局关键点代替A*算法所需要遍历的节点,大量减少计算量;提出布雷森汉姆直线算法重新定义邻居点,使其能够类似于A*算法探寻邻居点获取路径。在MATLAB中进行仿真验证,并在实际场景中测试,结果表明:改进A*算法在更快获取路径的基础上,路径长度更短,折点数更少,有效解决U型陷阱问题。

关键词: 路径规划, 改进A*算法, 关键点提取, 移动机器人

Abstract:

To address the limitations of the traditional A* algorithm in large and complex scenes, including traversing a large number of nodes, long computation times, and susceptibility to U-shaped traps, this paper proposes an improved A* algorithm incorporating the jump point search (JPS) concept and image processing techniques to extract key points from the global map. The proposed method preprocesses the global map to identify corner points located one grid diagonally from obstacles, constructs a key point list, and replaces the nodes traditionally traversed by the A* algorithm with these global key points, significantly reducing computational overhead. The neighbor nodes are redefined using the Bresenham line algorithm, enabling the algorithm to search for paths efficiently while avoiding unnecessary nodes. The improved A* algorithm was validated through simulations and obstacle scenarios in MATLAB. The results demonstrate that the proposed method achieves faster pathfinding, shorter path lengths, fewer turning points, and effectively addresses the U-shaped trap problem.

Key words: path planning, improved A* algorithm, key point extraction, mobile robot

中图分类号: