系统仿真学报 ›› 2025, Vol. 37 ›› Issue (9): 2397-2408.doi: 10.16182/j.issn1004731x.joss.24-0453

• 论文 • 上一篇    

基于遗传算法和A*算法的多农机协同作业优化方法

于逸然1,2, 赖惠成1,2, 高古学1,2, 张过1,2, 彭汪忆楠1,2, 杨龙飞1,2, 黄俊豪1,2   

  1. 1.新疆大学 计算机科学与技术学院,新疆 乌鲁木齐 830000
    2.新疆维吾尔自治区信号检测与处理重点实验室,新疆 乌鲁木齐 830000
  • 收稿日期:2024-04-26 修回日期:2024-06-04 出版日期:2025-09-18 发布日期:2025-09-22
  • 通讯作者: 赖惠成
  • 第一作者简介:于逸然(2000-),男,硕士生,研究方向为组合优化及路径规划。
  • 基金资助:
    科技创新2030——“新一代人工智能”重大项目(2022ZD0115803)

Optimization Method for Multi Agricultural Machinery Collaborative Operation Based on Genetic Algorithm and A * Algorithm

Yu Yiran1,2, Lai Huicheng1,2, Gao Guxue1,2, Zhang Guo1,2, Peng Wangyinan1,2, Yang Longfei1,2, Huang Junhao1,2   

  1. 1.The College of Computer Science and Technology, Xinjiang University, Urumqi 830000, China
    2.The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Urumqi 830000, China
  • Received:2024-04-26 Revised:2024-06-04 Online:2025-09-18 Published:2025-09-22
  • Contact: Lai Huicheng

摘要:

针对多农业机械(简称农机)协同作业中的任务分配不均和农机转向路口较多导致时间成本较大问题,提出一种预热策略改进分组遗传算法(pre-heat multi grouped genetic algorithm, PHMGA)与转向约束A*算法(turn A*, tA*)相结合的任务规划方法。PHMGA基于已知环境为每台农机分配任务,通过考虑行驶、作业及转向距离的代价目标函数确保任务量均衡,并设计多种算子和策略,以搜寻近似最优解。tA*算法则用于选择田间路径,通过转向惩罚规避转向路口较多的复杂区域,进一步缩短作业时间。仿真结果表明:所提算法有效均衡了每台农机的工作量并显著降低了作业时间和等待时间,相比传统算法分别减少了5%和56%~67%。

关键词: 农业机械, 改进分组遗传算法, 改进A*算法, 多机协同作业规划, 任务分配, 路径规划

Abstract:

To address the uneven task distribution among multiple agricultural machines (referred to as farm machinery) and the high time cost due to numerous turning points at intersections, this paper proposes a task planning method that combines a pre-heat multi grouped genetic algorithm (PHMGA) with the turn A* algorithm (tA*). PHMGA allocates tasks to each piece of farm machinery based on the known environment, ensuring balanced workload through a cost objective function that considers travel, operation, and turning distances. It also designs various operators and strategies to search for near-optimal solutions. The tA* algorithm is used to select paths in the fields, avoiding complex areas with many turning points through turning penalties, thereby further reducing operation time. Simulation results show that our proposed method effectively balances the workload among the farm machinery and significantly reduces operation and waiting times, achieving a reduction of 5% and 56%~67% respectively compared to traditional methods.

Key words: agricultural machines, improved multi-group genetic algorithm, improved A* algorithm, multi-machine collaborative operation planning, task assignment, path planning

中图分类号: