系统仿真学报 ›› 2025, Vol. 37 ›› Issue (3): 742-752.doi: 10.16182/j.issn1004731x.joss.23-1342

• 论文 • 上一篇    

基于改进哈里斯鹰算法的机器人路径规划研究

白宇鑫1,2, 陈振亚1,2, 石瑞涛1,2, 苏蔚涛1,2, 马卓强1,2, 杨尚进1,2   

  1. 1.中北大学 机械工程学院,山西 太原 030051
    2.恶劣环境下智能装备技术山西省重点实验室,山西 太原 030051
  • 收稿日期:2023-11-08 修回日期:2023-12-04 出版日期:2025-03-17 发布日期:2025-03-21
  • 通讯作者: 陈振亚
  • 第一作者简介:白宇鑫(2000-),男,硕士生,研究方向为智能机器人控制。
  • 基金资助:
    国家自然科学基金(52005456);山西省专利转化专项计划(202305006);中央引导地方科技发展专项(YDZJSX2022A032);山西省研究生科研创新项目(2023KY598)

Research on Robot Path Planning Based on Improved Harris Hawks Algorithm

Bai Yuxin1,2, Chen Zhenya1,2, Shi Ruitao1,2, Su Weitao1,2, Ma Zhuoqiang1,2, Yang Shangjin1,2   

  1. 1.School of Mechanical Engineering, North University of China, Taiyuan 030051, China
    2.Shanxi Provincial Key Laboratory of Intelligent Equipment Technology in Harsh Environment, Taiyuan 030051, China
  • Received:2023-11-08 Revised:2023-12-04 Online:2025-03-17 Published:2025-03-21
  • Contact: Chen Zhenya

摘要:

为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。

关键词: 哈里斯鹰优化算法, 迭代混沌, 精英反向学习, 黄金正弦算法, 栅格法, 路径规划

Abstract:

In order to improve the convergence accuracy of the HHO algorithm, this paper proposes a GSHHO(gold sine harris hawks optimization) algorithm based on multi-strategies. An infinite iterative chaotic map is used to initialize the population, and an elite reverse learning strategy is used to improve population quality; A convergence factor adjustment strategy is used to recalculate prey energy, balancing the global exploration and local development capabilities of the algorithm; In the development phase of Harris Eagle, the golden sine strategy was introduced to replace the original position update method and improve the local development ability of the algorithm; Experiments were conducted to evaluate the optimization performance of GSHHO. Experimental results show that the path length of GSHHO is reduced by 4.4% and 3.17% respectively and the stability is increased by 52.98% and 63.12% respectively compared with the original HHO algorithm.

Key words: HHO algorithm, iterative chaos, elite reverse learning, golden sine algorithm, grid method, path planning

中图分类号: