系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1555-1564.doi: 10.16182/j.issn1004731x.joss.24-0143

• 论文 • 上一篇    

融合改进A*算法与DWA算法的机器人动态避障方法研究

张艳, 李炳华, 霍涛, 刘榕   

  1. 天津城建大学 计算机与信息工程学院,天津 300380
  • 收稿日期:2024-02-06 修回日期:2024-04-24 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 刘榕
  • 第一作者简介:张艳(1982-),女,教授,博士,研究方向为图像处理、机器视觉。
  • 基金资助:
    天津市科技计划(22YDTPJC00840)

Research on Robot Dynamic Obstacle Avoidance Method Based on Improved A* and Dynamic Window Algorithm

Zhang Yan, Li Binghua, Huo Tao, Liu Rong   

  1. School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300380, China
  • Received:2024-02-06 Revised:2024-04-24 Online:2025-06-20 Published:2025-06-18
  • Contact: Liu Rong

摘要:

针对传统A*算法在路径规划过程中存在扩展节点多、路径转折点多,并且无法处理复杂环境中出现的动态障碍物等问题,提出了一种融合改进A*算法与DWA算法的机器人动态避障方法。在传统A*算法基础上改进邻域扩展方法,有效避免了经典四邻域扩展中存在的冗余节点多和八邻域扩展中存在的从障碍物中间穿过的路径等问题;设计了一种象限选择方法,在路径搜索过程中可以有效减少扩展节点的数量;设计了冗余点剔除策略,剔除路径多余节点;在每两个相邻节点间采用DWA算法进行局部路径规划,保证在全局最优路径的基础上实现了动态避障。实验结果验证了算法在机器人路径规划中的可行性。

关键词: 机器人路径规划, 改进A*算法, DWA算法, 动态避障

Abstract:

Aiming at the problems that the traditional A* algorithm has too many extension nodes and path turning points, and can't deal with dynamic obstacles in complex environment, a robot obstacle avoidance method combining improved A* algorithm and DWA algorithm is proposed. The A* algorithm improves the neighborhood expansion method and effectively avoids the problem of redundant nodes in the classical four-neighborhood expansion and the path through the obstacle in the eight-neighborhood expansion. A quadrant selection method is proposed, which can effectively reduce the number of extended nodes in the path search process. The redundant point elimination strategy is proposed to eliminate the redundant nodes in the path, and the DWA algorithm is used to carry out local path planning between each two adjacent nodes to ensure the dynamic obstacle avoidance based on the global optimal path. The experimental results show the feasibility of the algorithm in robot path planning.

Key words: robot path planning, improved A * algorithm, DWA algorithm, dynamic obstacle avoidance

中图分类号: