系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3060-3074.doi: 10.16182/j.issn1004731x.joss.25-0659

• 论文 • 上一篇    

基于时空图卷积的汽车配件供应链需求预测与仿真分析

李孝斌1,2, 胡冰1,2, 尹超1,2, 李波1,2, 马军3   

  1. 1.重庆大学 机械与运载工程学院,重庆 400044
    2.重庆大学 高端装备机械传动全国重点实验室,重庆 400044
    3.重庆铁马工业集团有限公司,重庆 400020
  • 收稿日期:2025-07-09 修回日期:2025-11-02 出版日期:2025-12-26 发布日期:2025-12-24
  • 通讯作者: 尹超
  • 第一作者简介:李孝斌(1987-),男,副教授,博士,研究方向为智能制造与网络协同制造。
  • 基金资助:
    国家重点研发计划(2022YFB3305603);国家自然科学基金(52575561);重庆市科技创新重大研发项目(CSTB2024TIAD-STX0029)

Spatiotemporal Graph Convolution-based Demand Forecasting and Simulation Analysis for Automotive Parts Supply Chain

Li Xiaobin1,2, Hu Bing1,2, Yin Chao1,2, Li Bo1,2, Ma Jun3   

  1. 1.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
    2.State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
    3.Chongqing Tiema Industries Group Co. , Ltd. , Chongqing 400020, China
  • Received:2025-07-09 Revised:2025-11-02 Online:2025-12-26 Published:2025-12-24
  • Contact: Yin Chao

摘要:

针对汽车售后配件供应网络运行复杂,配件需求预测精度不足、响应不及时,售后服务效率较低等问题,提出一种基于时空图卷积的汽车配件供应链需求预测方法。将汽车配件销售网络的销售数据构建为异构图,融合配件销量、金额等节点特征构建多维节点依赖关系;设计图卷积神经网络的节点迭代更新机制,结合长短时记忆神经网络捕获时序特征,利用时空注意力将时间特征与空间特征融入更新后的节点。仿真实验表明:该方法最优RMSE达到2.09,在动态扰动下误差峰值控制在3.44以内,恢复步数不超过50步,验证了该方法在复杂供应链环境下的预测效果和动态适应性。

关键词: 时空图神经网络, 需求预测, 配件供应链, 仿真分析

Abstract:

To address complex automotive after-sales parts supply network operations with insufficient demand forecasting accuracy, slow response, and low service efficiency, this study proposed a spatiotemporal graph convolution-based method for automotive parts supply chain demand forecasting. Sales network data of the automotive parts sales network was constructed as a heterogeneous graph, integrating node features like parts sales volume and value to build multi-dimensional node dependencies. A node update mechanism of the graph convolutional neural network was designed, combined with long short-term memory neural networks to capture temporal features, using spatiotemporal attention to integrate temporal and spatial features into updated nodes. Simulation experiments show the method achieves an optimal RMSE of 2.09, error peaks within 3.44 under dynamic disturbances, and recovery within 50 steps, validating its forecasting performance and dynamic adaptability in complex supply chain environments.

Key words: spatiotemporal graph neural network, demand forecasting, parts supply chain, simulation analysis

中图分类号: