系统仿真学报 ›› 2025, Vol. 37 ›› Issue (4): 1041-1050.doi: 10.16182/j.issn1004731x.joss.23-1574

• 论文 • 上一篇    

基于搜索步优化A*算法的移动机器人路径规划

喻蝶, 鲍柏仲, 司言, 段暕, 詹小斌, 史铁林   

  1. 华中科技大学 机械科学与工程学院,湖北 武汉 430074
  • 收稿日期:2023-12-26 修回日期:2024-03-02 出版日期:2025-04-17 发布日期:2025-04-16
  • 通讯作者: 史铁林
  • 第一作者简介:喻蝶(2000-),女,硕士生,研究方向为机器人轨迹规划。
  • 基金资助:
    国家自然科学基金(52205103);湖北省重点研发计划(2021BAA196)

Mobile Robot Path Planning Based on Search-step Optimized A* Algorithm

Yu Die, Bao Baizhong, Si Yan, Duan Jian, Zhan Xiaobin, Shi Tielin   

  1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2023-12-26 Revised:2024-03-02 Online:2025-04-17 Published:2025-04-16
  • Contact: Shi Tielin

摘要:

针对在大规模高分辨地图中传统A*算法机器人路径规划存在耗时较高、路径质量较差等问题,提出了一种搜索步优化A*算法。基于三次Hermite曲线构建步长匹配机器人尺寸、线形符合机器人动力学约束的搜索步(连接当前节点至后继节点的路径边)集合;利用曲线的整段弧长和最大曲率值建立更准确的代价函数。实验结果表明:相较于A*算法规划耗时平均降低51.83%、机器人执行路径的运动耗时平均降低14.07%;相较于Hybrid A*算法规划耗时平均降低67.65%,运动耗时相近,证明搜索步优化A*算法不仅提高了搜索效率,还通过提高路径质量提升了机器人的运动性能。

关键词: 移动机器人, 路径规划, A*算法, 参数曲线, 搜索步集合

Abstract:

A search-step optimized A* algorithm is proposed to address the issues with the traditional A* algorithm in robot path planning tasks, such as the high time consumption in large-scale high-resolution maps and the poor paths qualitys. Based on the cubic Hermite curve, a set of search steps (the path edges connecting the current node to its successors) is constructed, which can match the size of the robot and satisfy the dynamic constraints of the robot. More accurate cost functions are established based on the length and maximum absolute curvature value of the curve. Experimental results show that compared with the A* algorithm, the planning time is reduced by an average of 51.83% , and the movement time of the robot execution path is reduced by an average of 14.07% . Compared with the Hybrid A* algorithm, the average planning time is reduced by an average of 67.65%, while the movement time is similar. The results prove that the search-step optimized A* algorithm not only improves search efficiency, but also enhances the robot's performance by improving path quality.

Key words: mobile robot, path planning, A* algorithm, parametric curve, search-step set

中图分类号: