系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2089-2102.doi: 10.16182/j.issn1004731x.joss.24-0893

• 论文 • 上一篇    

动态障碍物环境下多四旋翼轨迹规划与跟踪

江好胜, 武芳芳, 黄泽贤, 马子玥, 董春云, 平续斌   

  1. 西安电子科技大学 机电工程学院,陕西 西安 710071
  • 收稿日期:2024-08-01 修回日期:2024-11-01 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 平续斌
  • 第一作者简介:江好胜(2000-),男,硕士生,研究方向为四旋翼无人机轨迹规划与轨迹跟踪控制方法。
  • 基金资助:
    国家自然科学基金(62103312);国家自然科学基金(62373313);机电集成学科交叉问题研究(YJSJ24001);中央高校基本科研业务费(ZYTS24020)

Trajectory Planning and Tracking for Multi-quadcopter in Dynamic Obstacle Environments

Jiang Haosheng, Wu Fangfang, Huang Zexian, Ma Ziyue, Dong Chunyun, Ping Xubin   

  1. School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
  • Received:2024-08-01 Revised:2024-11-01 Online:2025-08-20 Published:2025-08-26
  • Contact: Ping Xubin

摘要:

针对多四旋翼无人机系统在动态障碍物环境下执行复杂任务时面临的问题,设计了一种综合粒子群优化的任务分配、融合传统Informed-RRT*与A*算法的轨迹规划,以及基于模型预测控制的轨迹跟踪方法。将多四旋翼任务分配问题构建为经典的多旅行商问题,使用粒子群优化将任务分配给多四旋翼无人机。设计一种综合传统Informed-RRT*与A*算法优点的融合算法进行四旋翼无人机的轨迹规划,在动态障碍物环境下为多四旋翼无人机系统中每架无人机规划出安全有效的轨迹。基于模型预测控制方法设计跟踪控制器,使四旋翼无人机能够精确地实时跟踪在线规划轨迹,并且能够避免与动态障碍物发生碰撞。仿真实验验证了算法的有效性。

关键词: 四旋翼无人机, 动态障碍物, 任务分配, 轨迹规划, 跟踪控制

Abstract:

Multi-quadrotor UAV systems face challenges when performing complex tasks in dynamic obstacle environments. Therefore, a comprehensive particle swarm optimization-based task allocation method, a trajectory planning integrating the traditional Informed-RRT* and A* algorithms, and a trajectory tracking method based on model predictive control were designed.The multi-quadrotor task allocation problem was constructed as a classical multiple traveling salesman problem, and then, the particle swarm optimization was used to assign the task to multi-quadrotor UAVs. A fusion algorithm that combined the advantages of traditional Informed-RRT* and A* algorithms for quadrotor UAV trajectory planning was designed, so as to ensure that a safe and effective trajectory was planned for each UAV of the multi-quadrotor UAV system in dynamic obstacle environments. The tracking controller was designed using the model predictive control approach to ensure that the quadcopter UAV can accurately track the online planning trajectories in real time and avoid collisions with dynamic obstacles. The simulation experiments verify the effectiveness of the proposed method.

Key words: quadcopter unmanned aerial vehicle, dynamic obstacle, task allocation, trajectory planning, tracking control

中图分类号: