系统仿真学报 ›› 2025, Vol. 37 ›› Issue (5): 1280-1289.doi: 10.16182/j.issn1004731x.joss.24-0010

• 研究论文 • 上一篇    下一篇

基于双启发式信息蚁群算法的机器人路径规划

周晓晖, 李研强, 王勇, 赵德财, 杨逍瑶   

  1. 齐鲁工业大学(山东省科学院)自动化研究所,山东 济南 250014
  • 收稿日期:2024-01-04 修回日期:2024-03-26 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 李研强
  • 第一作者简介:周晓晖(1998-),男,硕士生,研究方向为路径规划。
  • 基金资助:
    国家自然科学基金(52072214);山东省自然科学基金(ZR2021MF103)

Robot Path Planning Based on Ant Colony Algorithm with Dual Heuristic Information

Zhou Xiaohui, Li Yanqiang, Wang Yong, Zhao Decai, Yang Xiaoyao   

  1. Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
  • Received:2024-01-04 Revised:2024-03-26 Online:2025-05-20 Published:2025-05-23
  • Contact: Li Yanqiang

摘要:

传统蚁群存在收敛速度慢、拐点较多和容易陷入局部最小值的问题,导致该算法难以有效应用于移动机器人的路径规划研究,提出一种改进蚁群算法,并将其应用于机器人的全局路径规划。使用A*算法快速规划一条路径并增加该路径的初始信息素,使改进算法在局部搜索时受到全局路径的引导,防止过多蚂蚁走入死路,减少初期搜索的盲目性;在转移概率中引入平滑性函数和双重启发式函数,增加了机器人移动的安全性和路径的搜索效率,提高算法对不同环境的适应能力;建立了信息素挥发因子自动更新策略和改进信息素更新规则,避免陷入局部最优,增强蚂蚁的搜索能力,并提升规划路径的质量。仿真实验结果表明,相比于其他的算法,改进的蚁群算法在不同环境中可以规划出更优质、更平滑的路径。

关键词: 蚁群算法, 移动机器人, 路径规划, 信息素, 启发式函数

Abstract:

The traditional ant colony algorithm is characterized by a slow convergence speed, numerous turning points, and a tendency to fall into local minima. These characteristics make the algorithm less effective for path planning research in mobile robotics. Therefore, this paper proposes an improved ant colony algorithm and applies it to global path planning for robots. The A* algorithm is used to quickly plan a path and increase the initial pheromone of that path, so that the improved algorithm is guided by the global path during the local search, preventing excessive ants from entering dead ends, and reducing the randomness in early search stages. A smoothness function and a dual heuristic function are introduced into the transition probability calculation, enhancing the safety and search efficiency of the robot's movement and improving the algorithm's adaptability to different environments. A strategy for automatic pheromone evaporation factor update and improved pheromone update rules are established to avoid getting trapped in local optima, strengthen the ants' search capabilities and enhance the quality of the planned paths. A 2D grid simulation environment is built using Matlab, and the results show that compared to other improved algorithms, the improved ant colonyalgorithm can plan higher quality and smoother paths in various environments.

Key words: ant colony algorithm, mobile robot, path planning, pheromone, heuristic function

中图分类号: