Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (11): 2454-2463.doi: 10.16182/j.issn1004731x.joss.22-0724
• Papers • Previous Articles Next Articles
Dong Zhiming1(), Si Bingshan1,2(
), Li Liang1
Received:
2022-06-23
Revised:
2022-09-02
Online:
2023-11-25
Published:
2023-11-23
Contact:
Si Bingshan
E-mail:dong_zhiming@163.com;18201304269@163.com
CLC Number:
Dong Zhiming, Si Bingshan, Li Liang. Requirements of Parallel Combat System Based on GQFD-Coupling Coordination Degree[J]. Journal of System Simulation, 2023, 35(11): 2454-2463.
Table 3
Expert grading scale
专家 | 需求 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | Y11 | Y12 | Y13 | Y14 | |
a | 6 | 3 | 9 | 2 | 2 | 5 | 8 | 3 | 8 | 7 | 5 | 8 | 6 | 8 | 2 | 5 | 2 | 3 | 2 | 4 | 2 | 9 | 5 |
b | 8 | 4 | 2 | 8 | 4 | 7 | 8 | 9 | 6 | 6 | 1 | 1 | 5 | 8 | 4 | 6 | 8 | 3 | 9 | 9 | 3 | 4 | 5 |
c | 5 | 3 | 7 | 8 | 6 | 7 | 1 | 5 | 1 | 8 | 1 | 7 | 1 | 7 | 5 | 7 | 7 | 2 | 6 | 4 | 5 | 8 | 4 |
d | 7 | 4 | 9 | 6 | 9 | 3 | 6 | 2 | 4 | 4 | 4 | 3 | 6 | 3 | 5 | 9 | 9 | 7 | 6 | 3 | 3 | 4 | 8 |
e | 7 | 6 | 3 | 1 | 7 | 2 | 2 | 7 | 6 | 7 | 3 | 8 | 9 | 4 | 6 | 1 | 8 | 5 | 6 | 2 | 8 | 4 | 7 |
f | 9 | 4 | 1 | 4 | 7 | 6 | 2 | 3 | 4 | 8 | 1 | 2 | 1 | 8 | 4 | 7 | 8 | 3 | 3 | 4 | 8 | 8 | 3 |
g | 4 | 7 | 2 | 6 | 5 | 8 | 8 | 2 | 3 | 6 | 8 | 6 | 4 | 7 | 5 | 6 | 5 | 7 | 2 | 7 | 9 | 7 | 1 |
h | 4 | 8 | 8 | 3 | 5 | 3 | 5 | 3 | 2 | 8 | 7 | 4 | 5 | 9 | 8 | 5 | 1 | 2 | 4 | 6 | 6 | 4 | 7 |
i | 6 | 6 | 9 | 7 | 3 | 6 | 7 | 6 | 8 | 6 | 1 | 6 | 2 | 4 | 4 | 5 | 2 | 3 | 4 | 6 | 7 | 8 | 3 |
j | 7 | 8 | 5 | 5 | 1 | 6 | 1 | 6 | 7 | 8 | 7 | 9 | 8 | 6 | 6 | 2 | 8 | 7 | 7 | 4 | 7 | 3 | 6 |
k | 3 | 9 | 4 | 5 | 4 | 3 | 7 | 6 | 3 | 4 | 6 | 6 | 8 | 7 | 3 | 4 | 7 | 4 | 5 | 5 | 9 | 1 | 1 |
l | 7 | 2 | 2 | 7 | 4 | 6 | 2 | 7 | 2 | 2 | 4 | 4 | 8 | 5 | 8 | 7 | 8 | 9 | 6 | 7 | 4 | 2 | 5 |
Table 5
Coupling coordination level
需求 | 耦合度 C | 协调 指数T | 耦合协 调度D | 协调 等级 | 耦合协 调程度 |
---|---|---|---|---|---|
Y1 | 0.937 | 0.709 | 0.815 | 9 | 良好 |
Y2 | 0.754 | 0.787 | 0.770 | 8 | 中级 |
Y3 | 0.857 | 0.964 | 0.909 | 10 | 优质 |
Y4 | 0.806 | 0.751 | 0.778 | 8 | 中级 |
Y5 | 0.951 | 0.844 | 0.896 | 9 | 良好 |
Y6 | 0.936 | 0.930 | 0.933 | 10 | 优质 |
Y7 | 0.878 | 0.660 | 0.761 | 8 | 中级 |
Y8 | 0.834 | 0.873 | 0.853 | 9 | 良好 |
Y9 | 0.886 | 0.909 | 0.897 | 9 | 良好 |
Y10 | 0.910 | 0.931 | 0.920 | 10 | 优质 |
Y11 | 0.928 | 0.810 | 0.867 | 9 | 良好 |
Y12 | 0.904 | 0.873 | 0.889 | 9 | 良好 |
Y13 | 0.847 | 1.000 | 0.920 | 10 | 优质 |
Y14 | 0.840 | 0.688 | 0.760 | 8 | 中级 |
1 | 王飞跃. 人工社会、计算实验、平等系统—关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004(4): 25-35. |
Wang Feiyue.Artificial Societies Computational Experiments and Parallel Systems A Discussion on Computational Theory of Comples Social-Economic Systems[J]. Complex systems and Computational, 2004(4): 25-35. | |
2 | 姜相争, 刘铁林, 崔帅博, 等. 基于GQFD的智能化装备保障能力需求分析[J]. 现代防御技术, 2022, 50(4): 38-44. |
Jiang Xiangzheng, Liu Tielin, Cui Shuaibo, et al. Requirement Analysis of Army Intelligent Equipment Support Capacity Based on GQFD[J]. Modern Defence Technology, 2022, 50(4): 38-44. | |
3 | 李波, 陈海建, 禹琳琳. 基于灰色模型的战时物资需求的定量预测[J]. 物流技术, 2013, 32(10): 269-270. |
Li Bo, Chen Haijian, Yu Linlin. Quantitative Forecasting of Wartime Material Demand Based on Grey Model[J]. Logistics Technology, 2013, 32(10): 269-270. | |
4 | 黄颖, 段继琨. 基于QFD的电磁蓝军构设需求研究[J]. 舰船电子对抗, 2021, 44(6): 34-37, 77. |
Huang Ying, Duan Jikun. Research into the Construction Requirements of Electromagnetic Blue Army Based on QFD[J]. Shipboard Electronic Countermeasure, 2021, 44(6): 34-37, 77. | |
5 | 丛晓男. 耦合度模型的形式、性质及在地理学中的若干误用[J]. 经济地理, 2019, 39(4): 18-25. |
Cong Xiaonan. Expression and Mathematical Property of Coupling Model, and Its Misuse in Geographical Science[J]. Economic Geography, 2019, 39(4): 18-25. | |
6 | 吴凡. 铁路货运周转量与GDP的耦合协调度分析[J]. 现代商贸工业, 2022, 43(13): 24-26. |
7 | 王成, 唐宁. 重庆市乡村三生空间功能耦合协调的时空特征与格局演化[J]. 地理研究, 2018, 37(6): 1100-1114. |
Wang Cheng, Tang Ning. Spatio-temporal Characteristics and Evolution of Rural Production-living-ecological Space Function Coupling Coordination in Chongqing Municipality[J]. Geographical Research, 2018, 37(6): 1100-1114. | |
8 | 张扬, 师海猛. 黄河流域城镇化高质量发展与生态环境耦合协调度评价[J]. 统计与决策, 2022, 38(10): 71-75. |
9 | 刘翔宇, 姜海洋, 赵洪利, 等. 基于DODAF-OODA的天基信息支援作战视图研究[J]. 兵器装备工程学报, 2019, 40(2): 33-38. |
Liu Xiangyu, Jiang Haiyang, Zhao Hongli, et al. Research on OV of Air Precision Striking Operation with Space Information Support Based on DODAF-OODA[J]. Journal of Ordnance Equipment Engineering, 2019, 40(2): 33-38. | |
10 | 周波, 戴幻尧, 乔会东, 等. 基于"OODA环"理论的认知电子战与赛博战探析[J]. 中国电子科学研究院学报, 2014, 9(6): 556-562. |
Zhou Bo, Dai Huanyao, Qiao Huidong, et al. Research on Recognition EW and Cyberspace Operation Based on "OODA Loop" Theory[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(6): 556-562. | |
11 | 张明智, 马力. 体系对抗OODA循环鲁棒性建模及仿真分析[J]. 系统仿真学报, 2017, 29(9): 1968-1975. |
Zhang Mingzhi, Ma Li. System-of-systems Combat OODA Loop Robustness Modeling and Experiment[J]. Journal of System Simulation, 2017, 29(9): 1968-1975. | |
12 | 王飞跃. 平行控制与数字孪生:经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020, 2(3): 293-300. |
Wang Feiyue. Parallel Control and Digital Twins: Control Theory Revisited and Reshaped[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 293-300. | |
13 | 周军华, 薛俊杰, 李鹤宇, 等. 关于武器系统数字孪生的若干思考[J]. 系统仿真学报, 2020, 32(4): 539-552. |
Zhou Junhua, Xue Junjie, Li Heyu, et al. Thinking on Digital Twin for Weapon System[J]. Journal of System Simulation, 2020, 32(4): 539-552. | |
14 | 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3): 385-392. |
Li Xin, Liu Xiu, Wan Xinxin. Overview of Digital Twins Application and Safe Development[J]. Journal of System Simulation, 2019, 31(3): 385-392. | |
15 | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
Zhang Lin, Lu Han. Discussing Digital Twin from of Modeling and Simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007. | |
16 | 段伟. 平行仿真的内涵、发展与应用[J]. 指挥与控制学报, 2019, 5(2): 82-86. |
Duan Wei. Parallel Simulation: Motivation, Concept and Application[J]. Journal of Command and Control, 2019, 5(2): 82-86. | |
17 | 邱晓刚, 张鹏. 面向平行军事系统的领域仿真知识工程研究[J]. 系统仿真学报, 2015, 27(8): 1665-1669, 1679. |
Qiu Xiaogang, Zhang Peng. Knowledge Engineering in Simulation of Parallel Military System[J]. Journal of System Simulation, 2015, 27(8): 1665-1669, 1679. | |
18 | 方凌智, 沈煌南. 技术和文明的变迁-元宇宙的概念研究[J]. 产业经济评论, 2022(1): 5-19. |
Fang Lingzhi, Shen Huangnan. Conceptualizing Metaverse: A Perspective From Technology and Civilization[J]. Review of Industrial Economics, 2022(1): 5-19. | |
19 | 李洪阳, 魏慕恒, 黄洁, 等. 信息物理系统技术综述[J]. 自动化学报, 2019, 45(1): 37-50. |
Li Hongyang, Wei Muheng, Huang Jie, et al. Survey on Cyber-physical Systems[J]. Acta Automatica Sinica, 2019, 45(1): 37-50. | |
20 | 周玉芳, 余云智, 翟永翠. LVC仿真技术综述[J]. 指挥控制与仿真, 2010, 32(4): 1-7. |
Zhou Yufang, Yu Yunzhi, Zhai Yongcui. Review on LVC Simulation Technology[J]. Command Control & Simulation, 2010, 32(4): 1-7. | |
21 | 张昱, 张明智, 胡晓峰. 面向LVC训练的多系统互联技术综述[J]. 系统仿真学报, 2013, 25(11): 2515-2521. |
Zhang Yu, Zhang Mingzhi, Hu Xiaofeng. On Multi-system Integration Technology Oriented to LVC Training[J]. Journal of System Simulation, 2013, 25(11): 2515-2521. | |
22 | 高昂, 董志明, 郭齐胜, 等. 陆军分队LVC战术训练虚实实体配置研究[J]. 系统仿真学报, 2021, 33(4): 982-994. |
Gao Ang, Dong Zhiming, Guo Qisheng, et al. Study on Virtual and Real Entity Configuration of Army Units LVC Tactical Training[J]. Journal of System Simulation, 2021, 33(4): 982-994. | |
23 | 李亮, 郭齐胜, 李永, 等. 基于灰关联分析的质量功能配置方法研究[J]. 计算机集成制造系统, 2007, 13(12): 2469-2472, 2486. |
Li Liang, Guo Qisheng, Li Yong, et al. Qality Function Deployment Based on Grey Relational Analysis[J]. Computer Integrated Manufacturing Systems, 2007, 13(12): 2469-2472, 2486. | |
24 | 蒋晓原, 邓克波. 面向未来信息化作战的指挥信息系统需求[J]. 指挥信息系统与技术, 2016, 7(4): 1-5. |
Jiang Xiaoyuan, Deng Kebo. Command Information System Requirements for Future Informatization Operation[J]. Command Information System and Technology, 2016, 7(4): 1-5. | |
25 | 陈毅雨, 刘硕, 钟斌, 等. 基于GQFD的警用反恐无人机战技性能需求分析[J]. 火力与指挥控制, 2016, 41(9): 142-145, 150. |
Chen Yiyu, Liu Shuo, Zhong Bin, et al. Requirement Analysisof Police Anti-terrorism Unmanned Aerial Vehicle's Tactical Performance Based on GQFD[J]. Fire Control & Command Control, 2016, 41(9): 142-145, 150. | |
26 | 秦海峰, 侯兴明, 廖兴禾, 等. 基于GQFD航天装备维修保障能力需求分析[J]. 兵器装备工程学报, 2020, 41(7): 228-232. |
Qin Haifeng, Hou Xingming, Liao Xinghe, et al. Requirement Analysis of Space Equipment Maintenance Support Capacity Based on GQFD[J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 228-232. |
[1] | Chen Xue, Hu Rong, Wang Hui, Li Zuocheng, Qian Bin, Li Yixu. Learning-based Ant Colony Optimization Algorithm for Solving a Kind of Complex 2-Echelon Vehicle Routing Problem [J]. Journal of System Simulation, 2023, 35(11): 2476-2495. |
[2] | Zhang Yingyu, Wu Liyun, Jia Shengtai. Multi-depot Half-open Vehicle Routing Problem with Simultaneous Delivery-pickup and Time Windows [J]. Journal of System Simulation, 2023, 35(11): 2464-2475. |
[3] | Zhang Wenfeng, Zhu Zhichao, Wu Dinghui. Rolling Bearing Fault Diagnosis Based on Weighted Domain Adaptive Convolutional Neural Network [J]. Journal of System Simulation, 2023, 35(11): 2445-2453. |
[4] | Jia Zhengxuan, Lin Tingyu, Xiao Yingying, Shi Guoqiang, Wang Hao, Zeng Bi, Ou Yiming, Zhao Pengpeng. Imitative Generation of Optimal Guidance Law Based on Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(11): 2410-2418. |
[5] | Wang Can, Ji Haoran, Guo Qisheng, Dong Zhiming, Tan Yaxin, Mu Ge. Development of Combat Concept of Intelligent Land Assault System Based on DoDAF [J]. Journal of System Simulation, 2023, 35(11): 2397-2409. |
[6] | Zou Quan, Hua Yixin, Shao Zhu, Zhao Wenbi. Analysis of Autonomous Aerial Refueling Capability Requirements and Key Evaluation Indicators [J]. Journal of System Simulation, 2023, 35(11): 2385-2396. |
[7] | Zhang Tianrui, Liu Yuting, Wang Yike. Research on Multi-process Product Quality Prediction Based on Improved BiLSTM [J]. Journal of System Simulation, 2023, 35(11): 2321-2332. |
[8] | Mao Ziquan, Gao Jialong, Gong Jianxing, Liu Quan. Application of Virtual-Real Simulation in Military Field [J]. Journal of System Simulation, 2023, 35(11): 2289-2311. |
[9] | Li Dongsheng, Liu Ye, Song Yankan, Shen Chen. Electromagnetic Transient Equivalent Modeling Method for Wind Power Clusters Adapted to Expected Faults [J]. Journal of System Simulation, 2023, 35(10): 2101-2112. |
[10] | Chen Shanshan, Wang Hongzhi, Xia Tian. Key Technology and Application of Digital Twin Modeling for MRI [J]. Journal of System Simulation, 2023, 35(10): 2122-2132. |
[11] | Liu Lu, Li Wenxin, Song Xiao, Sun Bingli, Gong Guanghong. A Fuzzy Group Decision-making-based Method for Green Supplier Selection and Order Allocation [J]. Journal of System Simulation, 2023, 35(10): 2133-2149. |
[12] | Wu Peng, Yang Zongmo, Jing Qianfeng, Li Yulin. A Hybrid Empirical Method for Fast Modeling of Ship Manoeuvring Motion [J]. Journal of System Simulation, 2023, 35(10): 2150-2160. |
[13] | Zou Mengfan, He Xiaoyu. Modeling and Analysis on Scattering Characteristics Automatic Driving Radar Bands in Rainy Environment [J]. Journal of System Simulation, 2023, 35(10): 2161-2169. |
[14] | Zhang Tianrui, Niu Huiyuan, Xie Wei. Integrated Scheduling Simulation Based on Improved Moth Flame Optimizer [J]. Journal of System Simulation, 2023, 35(10): 2170-2181. |
[15] | Wen Rui. A Structured Conceptual Model of Joint Operations From Design Perspective [J]. Journal of System Simulation, 2023, 35(10): 2202-2211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||