Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (10): 2133-2149.doi: 10.16182/j.issn1004731x.joss.23-FZ0808E
• Papers • Previous Articles Next Articles
Liu Lu1(), Li Wenxin2, Song Xiao2(
), Sun Bingli2, Gong Guanghong1
Online:
2023-10-30
Published:
2023-10-26
Contact:
Song Xiao
E-mail:liulu512@buaa.edu.cn;08122@buaa.edu.cn
About author:
Liu Lu (1993-), male, PhD student, research areas: supplier selection, fuzzy set and application, and multi-criteria decision-making. Email: liulu512@buaa.edu.cn
Supported by:
CLC Number:
Liu Lu, Li Wenxin, Song Xiao, Sun Bingli, Gong Guanghong. A Fuzzy Group Decision-making-based Method for Green Supplier Selection and Order Allocation[J]. Journal of System Simulation, 2023, 35(10): 2133-2149.
Table 13
Closeness coefficients of traditional and green criteria in Cases A~D
Case A | Case B | Case C | Case D | ||
---|---|---|---|---|---|
Traditional criteria | Supplier 1 | 0.543 | 0.481 | 0.541 | 0.549 |
Supplier 2 | 0.698 | 0.980 | 0.642 | 0.964 | |
Supplier 3 | 0.598 | 0.647 | 0.569 | 0.665 | |
Supplier 4 | 0.446 | 0.195 | 0.446 | 0.170 | |
Green criteria | Supplier 1 | 0.636 | 0.445 | 0.603 | 0.398 |
Supplier 2 | 0.661 | 0.565 | 0.645 | 0.625 | |
Supplier 3 | 0.702 | 0.741 | 0.650 | 0.669 | |
Supplier 4 | 0.633 | 0.431 | 0.608 | 0.430 |
Table 14
Optimal TVP values in Case A with various criteria weights βG/βT under different weight factors ω1/ω2
0.2/0.8 | 0.4/0.6 | 0.6/0.4 | 0.8/0.2 | |
---|---|---|---|---|
0.1/0.9 | 4 280.660 | 4 350.212 | 4 419.763 | 4 489.315 |
0.3/0.7 | 4 322.240 | 4 383.435 | 4 444.630 | 4 505.825 |
0.5/0.5 | 4 387.232 | 4 411.947 | 4 474.198 | 4 536.449 |
0.7/0.3 | 4 416.676 | 4 440.459 | 4 498.614 | 4 541.553 |
0.9/0.1 | 4 416.676 | 4 464.100 | 4 511.525 | 4 558.949 |
Table 17
Optimal TVP values in Case D with various criteria weights βG/βT under different weight factors ω1/ω2
0.2/0.8 | 0.4/0.6 | 0.6/0.4 | 0.8/0.2 | |
---|---|---|---|---|
0.1/0.9 | 4 751.198 | 4 524.612 | 4 298.025 | 4 056.929 |
0.3/0.7 | 4 964.222 | 4 713.060 | 4 398.345 | 4 186.639 |
0.5/0.5 | 5 070.365 | 4 795.543 | 4 478.617 | 4 205.839 |
0.7/0.3 | 5 070.365 | 4 795.543 | 4 520.720 | 4 229.935 |
0.9/0.1 | 5 070.365 | 4 795.543 | 4 520.720 | 4 245.898 |
Table 15
Optimal TVP values in Case B with various criteria weights βG/βT under different weight factors ω1/ω2
0.2/0.8 | 0.4/0.6 | 0.6/0.4 | 0.8/0.2 | |
---|---|---|---|---|
0.1/0.9 | 4 703.152 | 4 474.735 | 4 246.319 | 4 020.128 |
0.3/0.7 | 4 906.480 | 4 664.431 | 4 363.439 | 4 147.502 |
0.5/0.5 | 4 995.489 | 4 738.221 | 4 441.903 | 4 201.934 |
0.7/0.3 | 4 995.489 | 4 738.221 | 4 480.953 | 4 223.685 |
0.9/0.1 | 4 995.489 | 4 738.221 | 4 480.953 | 4 223.685 |
Table 16
Optimal TVP values in Case C with various criteria weights βG/βT under different weight factors ω1/ω2
0.2/0.8 | 0.4/0.6 | 0.6/0.4 | 0.8/0.2 | |
---|---|---|---|---|
0.1/0.9 | 4 074.115 | 4 149.426 | 4 224.738 | 4 300.049 |
0.3/0.7 | 4 107.040 | 4 176.199 | 4 241.639 | 4 311.608 |
0.5/0.5 | 4 158.304 | 4 176.199 | 4 245.359 | 4 335.254 |
0.7/0.3 | 4 184.698 | 4 219.687 | 4 281.071 | 4 335.254 |
0.9/0.1 | 4 184.698 | 4 240.025 | 4 295.353 | 4 345.910 |
Table 20
Optimal TCP and TVP values with βG/βT = 0.2/0.8
Case A | Case B | Case C | Case D | |||||
---|---|---|---|---|---|---|---|---|
TCP | TVP | TCP | TVP | TCP | TVP | TCP | TVP | |
0.1/0.9 | 205 230.8 | 4 280.660 | 205 529.2 | 4 703.152 | 205 230.8 | 4 074.115 | 205 529.2 | 4 751.198 |
0.2/0.8 | 205 449.2 | 4 315.470 | 206 462.2 | 4 795.312 | 205 449.2 | 4 101.700 | 205 529.2 | 4 751.198 |
0.3/0.7 | 205 529.2 | 4 322.240 | 208 012.2 | 4 906.480 | 205 529.2 | 4 107.040 | 208 012.2 | 4 964.222 |
0.4/0.6 | 205 529.2 | 4 322.240 | 208 012.2 | 4 906.480 | 205 529.2 | 4 107.040 | 210 665.4 | 5 070.365 |
0.5/0.5 | 208 012.2 | 4 387.232 | 210 665.4 | 4 995.489 | 208 012.2 | 4 158.304 | 210 665.4 | 5 070.365 |
0.6/0.4 | 208 012.2 | 4 387.232 | 210 665.4 | 4 995.489 | 208 012.2 | 4 158.304 | 210 665.4 | 5 070.365 |
0.7/0.3 | 210 665.4 | 4 416.676 | 210 665.4 | 4 995.489 | 210 665.4 | 4 184.698 | 210 665.4 | 5 070.365 |
0.8/0.2 | 210 665.4 | 4 416.676 | 210 665.4 | 4 995.489 | 210 665.4 | 4 184.698 | 210 665.4 | 5 070.365 |
0.9/0.1 | 210 665.4 | 4 416.676 | 210 665.4 | 4 995.489 | 210 665.4 | 4 184.698 | 210 665.4 | 5 070.365 |
Table 23
Optimal TCP and TVP values with βG/βT=0.8/0.2
Case A | Case B | Case C | Case D | |||||
---|---|---|---|---|---|---|---|---|
TCP | TVP | TCP | TVP | TCP | TVP | TCP | TVP | |
0.1/0.9 | 205 230.8 | 4 489.315 | 205 538.2 | 4 020.128 | 205 230.8 | 4 300.049 | 205 449.2 | 4 056.929 |
0.2/0.8 | 205 230.8 | 4 489.315 | 206 462.2 | 4 147.502 | 205 230.8 | 4 300.049 | 206 462.2 | 4 186.639 |
0.3/0.7 | 205 529.2 | 4 505.825 | 206 462.2 | 4 147.502 | 205 449.2 | 4 311.608 | 206 462.2 | 4 186.639 |
0.4/0.6 | 205 538.2 | 4 506.209 | 206 982.2 | 4 169.102 | 205 529.2 | 4 314.518 | 206 982.2 | 4 205.839 |
0.5/0.5 | 206 462.2 | 4 536.449 | 208 532.2 | 4 201.934 | 206 462.2 | 4 335.254 | 206 982.2 | 4 205.839 |
0.6/0.4 | 206 462.2 | 4 536.449 | 208 532.2 | 4 201.934 | 206 462.2 | 4 335.254 | 208 532.2 | 4 229.935 |
0.7/0.3 | 206 982.2 | 4 541.553 | 210 665.4 | 4 223.685 | 206 462.2 | 4 335.254 | 208 532.2 | 4 229.935 |
0.8/0.2 | 208 532.2 | 4 552.017 | 210 665.4 | 4 223.685 | 206 982.2 | 4 338.710 | 210 665.4 | 4 245.898 |
0.9/0.1 | 210 665.4 | 4 558.949 | 210 665.4 | 4 223.685 | 208 532.2 | 4 345.910 | 210 665.4 | 4 245.898 |
Table 21
Optimal TCP and TVP values with βG/βT = 0.4/0.6
Case A | Case B | Case C | Case D | |||||
---|---|---|---|---|---|---|---|---|
TCP | TVP | TCP | TVP | TCP | TVP | TCP | TVP | |
0.1/0.9 | 205 230.8 | 4 350.212 | 205 529.2 | 4 474.735 | 205 230.8 | 4 149.426 | 205 529.2 | 4 524.612 |
0.2/0.8 | 205 449.2 | 4 377.495 | 206 462.2 | 4 579.375 | 205 449.2 | 4 171.669 | 205 529.2 | 4 524.612 |
0.3/0.7 | 205 529.2 | 4 383.435 | 208 012.2 | 4 664.431 | 205 529.2 | 4 176.199 | 208 012.2 | 4 713.060 |
0.4/0.6 | 205 529.2 | 4 383.435 | 208 012.2 | 4 664.431 | 205 529.2 | 4 176.199 | 208 012.2 | 4 713.060 |
0.5/0.5 | 206 462.2 | 4 411.947 | 210 665.4 | 4 738.221 | 205 529.2 | 4 176.199 | 210 665.4 | 4 795.543 |
0.6/0.4 | 208 012.2 | 4 440.459 | 210 665.4 | 4 738.221 | 208 012.2 | 4 219.687 | 210 665.4 | 4 795.543 |
0.7/0.3 | 208 012.2 | 4 440.459 | 210 665.4 | 4 738.221 | 208 012.2 | 4 219.687 | 210 665.4 | 4 795.543 |
0.8/0.2 | 210 665.4 | 4 464.100 | 210 665.4 | 4 738.221 | 210 665.4 | 4 240.025 | 210 665.4 | 4 795.543 |
0.9/0.1 | 210 665.4 | 4 464.100 | 210 665.4 | 4 738.221 | 210 665.4 | 4 240.025 | 210 665.4 | 4 795.543 |
Table 22
Optimal TCP and TVP values with βG/βT = 0.6/0.4
Case A | Case B | Case C | Case D | |||||
---|---|---|---|---|---|---|---|---|
TCP | TVP | TCP | TVP | TCP | TVP | TCP | TVP | |
0.1/0.9 | 205 230.8 | 4 419.763 | 205 529.2 | 4 246.319 | 205 230.8 | 4 224.738 | 205 529.2 | 4 298.025 |
0.2/0.8 | 205 449.2 | 4 439.520 | 206 462.2 | 4 363.439 | 205 230.8 | 4 224.738 | 206 462.2 | 4 398.345 |
0.3/0.7 | 205 529.2 | 4 444.630 | 206 462.2 | 4 363.439 | 205 449.2 | 4 241.639 | 206 462.2 | 4 398.345 |
0.4/0.6 | 205 529.2 | 4 444.630 | 208 532.2 | 4 441.903 | 205 529.2 | 4 245.359 | 208 012.2 | 4 461.897 |
0.5/0.5 | 206 462.2 | 4 474.198 | 208 532.2 | 4 441.903 | 205 529.2 | 4 245.359 | 208 532.2 | 4 478.617 |
0.6/0.4 | 206 462.2 | 4 474.198 | 210 665.4 | 4 480.953 | 206 462.2 | 4 264.271 | 210 665.4 | 4 520.720 |
0.7/0.3 | 208 532.2 | 4 498.614 | 210 665.4 | 4 480.953 | 208 012.2 | 4 281.071 | 210 665.4 | 4 520.720 |
0.8/0.2 | 210 665.4 | 4 511.525 | 210 665.4 | 4 480.953 | 208 532.2 | 4 284.223 | 210 665.4 | 4 520.720 |
0.9/0.1 | 210 665.4 | 4 511.525 | 210 665.4 | 4 480.953 | 210 665.4 | 4 295.353 | 210 665.4 | 4 520.720 |
1 | Liu Lu, Song Xiao, Zhou Zhetao. Aircraft Engine Remaining Useful Life Estimation Via a Double Attention-based Data-driven Architecture[J]. Reliability Engineering & System Safety, 2022, 221: 108330. |
2 | Liu Lu, Song Xiao, Chen Kai, et al. An Enhanced Encoder-decoder Framework for Bearing Remaining Useful Life Prediction[J]. Measurement, 2021, 170: 108753. |
3 | Barman A, Das R, Kanti De Pijus. Optimal Pricing, Replenishment Scheduling, and Preservation Technology Investment Policy for Multi-item Deteriorating Inventory Model Under Shortages[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 12(5): 2150039. |
4 | Liou J J H, Chang M H, Lo H W, et al. Application of an MCDM Model With Data Mining Techniques for Green Supplier Evaluation and Selection[J]. Applied Soft Computing, 2021, 109: 107534. |
5 | Wang C N, Nguyen T L, Dang T T. Two-stage Fuzzy MCDM for Green Supplier Selection in Steel Industry[J]. Intelligent Automation & Soft Computing, 2022, 33(2): 1245-1260. |
6 | Dickson G W. An Analysis of Vendor Selection Systems and Decisions[J]. Journal of Purchasing, 1966, 2(1): 5-17. |
7 | Gao Hengxia, Ju Yanbing, Santibanez Gonzalez E D R, et al. Green Supplier Selection in Electronics Manufacturing: an Approach Based on Consensus Decision Making[J]. Journal of Cleaner Production, 2020, 245: 118781. |
8 | Gupta S, Soni U, Kumar G. Green Supplier Selection Using Multi-criterion Decision Making Under Fuzzy Environment: a Case Study in Automotive Industry[J]. Computers & Industrial Engineering, 2019, 136: 663-680. |
9 | Yazdani M, Ebadi Torkayesh A, Stević Željko, et al. An Interval Valued Neutrosophic Decision-making Structure for Sustainable Supplier Selection[J]. Expert Systems With Applications, 2021, 183: 115354. |
10 | Hendiani S, Mahmoudi A, Liao H. A Multi-stage Multi-criteria Hierarchical Decision-making Approach for Sustainable Supplier Selection[J]. Applied Soft Computing, 2020, 94: 106456. |
11 | Mafakheri F, Breton M, Ghoniem A. Supplier Selection-order Allocation: a Two-stage Multiple Criteria Dynamic Programming Approach[J]. International Journal of Production Economics, 2011, 132(1): 52-57. |
12 | Hacer Güner Gören. A Decision Framework for Sustainable Supplier Selection and Order Allocation With Lost Sales[J]. Journal of Cleaner Production, 2018, 183: 1156-1169. |
13 | Alegoz M, Yapicioglu H. Supplier Selection and Order Allocation Decisions Under Quantity Discount and Fast Service Options[J]. Sustainable Production and Consumption, 2019, 18: 179-189. |
14 | Hosseini Z S, Flapper S D, Pirayesh M. Sustainable Supplier Selection and Order Allocation Under Demand, Supplier Availability and Supplier Grading Uncertainties[J]. Computers & Industrial Engineering, 2022, 165: 107811. |
15 | Nourmohamadi Shalke P, Paydar M M, Hajiaghaei-keshteli M. Sustainable Supplier Selection and Order Allocation Through Quantity Discounts[J]. International Journal of Management Science and Engineering Management, 2018, 13(1): 20-32. |
16 | Hwang C L, Yoon K. Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. |
17 | Tavassoli M, Saen R F, Zanjirani D M. Assessing Sustainability of Suppliers: a Novel Stochastic-fuzzy DEA Model[J]. Sustainable Production and Consumption, 2020, 21: 78-91. |
18 | He Jingjing, Zheng Liwei, Cui Zhanqi. Fuzzy Control Decision-making Framework Adapted to the Uncertainty Environment of Complex Software System[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2022, 13(2): 2241010. |
19 | Saaty R W. The Analytic Hierarchy Process-what It Is and How It Is Used[J]. Mathematical Modelling, 1987, 9(3/5): 161-176. |
20 | 季玉琦, 谢欢, 史少彧, 等. 基于EWM-AHP-BP神经网络的地区电网电压无功组合评价[J]. 系统仿真学报, 2023, 35(4): 843-852. |
Ji Yuqi, Xie Huan, Shi Shaoyu, et al. Voltage and Reactive Power Combinational Evaluation of Regional Power Grid Based on EWM-AHP-BP Neural Network[J]. Journal of System Simulation, 2023, 35(4): 843-852. | |
21 | Kamali A, Fatemi Ghomi S M T, Jolai F. A Multi-objective Quantity Discount and Joint Optimization Model for Coordination of a Single-buyer Multi-vendor Supply Chain[J]. Computers & Mathematics With Applications, 2011, 62(8): 3251-3269. |
22 | Alsyouf I, Hamdan S. A Multi-objective Optimization of Maintenance Policies Using Weighted Comprehensive Criterion Method (WCCM)[C]//2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). Piscataway, NJ, USA: IEEE, 2017: 1-4. |
[1] | Sun Bingli, Song Xiao, Gong Guanghong. Supplier Selection Based on Supplier Portrait and Markov Monte Carlo Method [J]. Journal of System Simulation, 2021, 33(11): 2720-2732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||