Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (11): 2445-2453.doi: 10.16182/j.issn1004731x.joss.22-0616
• Papers • Previous Articles Next Articles
Zhang Wenfeng(), Zhu Zhichao, Wu Dinghui(
)
Received:
2022-06-06
Revised:
2022-08-10
Online:
2023-11-25
Published:
2023-11-23
Contact:
Wu Dinghui
E-mail:6211924137@stu.jiangnan.edu.cn;wdh123@jiangnan.edu.cn
CLC Number:
Zhang Wenfeng, Zhu Zhichao, Wu Dinghui. Rolling Bearing Fault Diagnosis Based on Weighted Domain Adaptive Convolutional Neural Network[J]. Journal of System Simulation, 2023, 35(11): 2445-2453.
1 | Wang Huaqing, Li Shi, Song Liuyang, et al. A Novel Convolutional Neural Network Based Fault Recognition Method via Image Fusion of Multi-vibration-signals[J]. Computers in Industry, 2019, 105: 182-190. |
2 | 陈仁祥, 杨星, 胡小林, 等. 深度置信网络迁移学习的行星齿轮箱故障诊断方法[J]. 振动与冲击, 2021, 40(1): 127-133, 150. |
Chen Renxiang, Yang Xing, Hu Xiaolin, et al. Planetary Gearbox Fault Diagnosis Method Based on Deep Belief Network Transfer Learning[J]. Journal of Vibration and Shock, 2021, 40(1): 127-133, 150. | |
3 | 张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42(10): 275-281. |
Zhang Qun, Tang Zhenhao, Wang Gong, et al. Ultra-short-term Wind Power Prediction Model Based on Long and Short Term Memory Network[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 275-281. | |
4 | Liu Han, Zhou Jianzhong, Zheng Yang, et al. Fault Diagnosis of Rolling Bearings with Recurrent Neural Network-based Autoencoders[J]. ISA Transactions, 2018, 77: 167-178. |
5 | Ben-David S, Blitzer J, Crammer K, et al. A Theory of Learning From Different Domains[J]. Machine Learning, 2010, 79(1): 151-175. |
6 | Guo Liang, Lei Yaguo, Xing Saibo, et al. Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines with Unlabeled Data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7316-7325. |
7 | Jin Tongtong, Yan Chuliang, Chen Chuanhai, et al. New Domain Adaptation Method in Shallow and Deep Layers of the CNN for Bearing Fault Diagnosis Under Different Working Conditions[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(11): 3701-3712. |
8 | Li Xiang, Zhang Wei. Deep Learning-based Partial Domain Adaptation Method on Intelligent Machinery Fault Diagnostics[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4351-4361. |
9 | 孙琦钰, 赵超强, 唐漾, 等. 基于无监督域自适应的计算机视觉任务研究进展[J]. 中国科学(技术科学), 2022, 52(1): 26-54. |
Sun Qiyu, Zhao Chaoqiang, Tang Yang, et al. A Survey on Unsupervised Domain Adaptation in Computer Vision Tasks[J]. Scientia Sinica(Technologica), 2022, 52(1): 26-54. | |
10 | 许亚雲, 严华. 无监督域适应的表示学习算法[J]. 哈尔滨工业大学学报, 2021, 53(2): 40-46. |
Xu Yayun, Yan Hua. Representation Learning for Unsupervised Domain Adaptation[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 40-46. | |
11 | Zhao Minghang, Kang M, Tang Baoping, et al. Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4290-4300. |
12 | Liang Mingxuan, Cao Pei, Tang J. Rolling Bearing Fault Diagnosis Based on Feature Fusion with Parallel Convolutional Neural Network[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3): 819-831. |
13 | 崔石玉, 朱志宇. 基于参数迁移和一维卷积神经网络的海水泵故障诊断[J]. 振动与冲击, 2021, 40(24): 180-189. |
Cui Shiyu, Zhu Zhiyu. Seawater Pump Fault Diagnosis Based on Parameter Transfer and One-dimensional Convolutional Neural Network[J]. Journal of Vibration and Shock, 2021, 40(24): 180-189. | |
14 | Kang Guoliang, Jiang Lu, Yang Yi, et al. Contrastive Adaptation Network for Unsupervised Domain Adaptation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 4888-4897. |
15 | 赵小强, 张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2021, 55(12): 108-118. |
Zhao Xiaoqiang, Zhang Yazhou. Improved CNN-based Fault Diagnosis Method for Rolling Bearings Under Variable Working Conditions[J]. Journal of Xi'an Jiaotong University, 2021, 55(12): 108-118. | |
16 | 谢银成, 黎曦, 李天, 等. 基于改进ResNet和损失函数的表情识别[J]. 自动化与仪表, 2022, 37(4): 64-69. |
Xie Yincheng, Li Xi, Li Tian, et al. Expression Recognition Based on Improved ResNet and Loss Function[J]. Automation & Instrumentation, 2022, 37(4): 64-69. | |
17 | 刘俊锋, 董宝营, 俞翔, 等. 基于FSC-MPE与BP神经网络的滚动轴承故障诊断方法[J]. 中国舰船研究, 2021, 16(6): 183-190. |
Liu Junfeng, Dong Baoying, Yu Xiang, et al. Rolling Bearing Fault Diagnosis Method Based on FSC-MPE and BP Neural Network[J]. Chinese Journal of Ship Research, 2021, 16(6): 183-190. | |
18 | Long Mingsheng, Cao Yue, Cao Zhangjie, et al. Transferable Representation Learning with Deep Adaptation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071-3085. |
19 | Jin Tongtong, Yan Chuliang, Chen Chuanhai, et al. New Domain Adaptation Method in Shallow and Deep Layers of the CNN for Bearing Fault Diagnosis Under Different Working Conditions[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(11): 3701-3712. |
20 | Ganin Y, Lempitsky V. Unsupervised Domain Adaptation by Backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2015: 1180-1189. |
21 | Laurens van der Maaten, Hinton G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605. |
[1] | Yuan Biao, Huang Yourui, Xu Shanyong, Rong Xue. Construction and Application of Digital Twin System for Optical Fiber Secondary Coating Workshop [J]. Journal of System Simulation, 2023, 35(9): 2011-2022. |
[2] | Na Ma, Tingxin Wen, Xu Jia, Xiaohui Li. Cross-domain Text Sentiment Classification Based on Auxiliary Classification Networks [J]. Journal of System Simulation, 2023, 35(4): 721-733. |
[3] | Jiarui Liu, Guotian Yang, Xiaowei Wang. A Wind Turbine Fault Diagnosis Method Based on Siamese Deep Neural Network [J]. Journal of System Simulation, 2022, 34(11): 2348-2358. |
[4] | Zhu Zhichao, Wu Dinghui, Yue Yuanchang. Engine Wear Fault Diagnosis Based on Supervised Kernel Entropy Component Analysis [J]. Journal of System Simulation, 2022, 34(1): 45-52. |
[5] | Li Yuan, Geng Zewei. Fault Diagnosis of Industrial Process Based on LLE and K-means Clustering Algorithm [J]. Journal of System Simulation, 2021, 33(9): 2066-2073. |
[6] | Wang Yinsong, Sun Tianshu. Actuator Fault Status Evaluation Based on Two-Class NMF Network [J]. Journal of System Simulation, 2021, 33(8): 1882-1891. |
[7] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[8] | Wei Jingjing, Liu Qinming, Ye Chunming, Li Guanlin. Fault Diagnosis of Mechanical Equipment Based on GA-SVR with Missing Data in Small Samples [J]. Journal of System Simulation, 2021, 33(6): 1342-1349. |
[9] | Wu Dinghui, Zhu Zhichao, Han Xinhong. Fault Detection of Wind Turbine Bearing Based on BO-SDAE Multi-source Signal [J]. Journal of System Simulation, 2021, 33(5): 1148-1156. |
[10] | Hu Xiaoman, Wang Yan, Ji Zhicheng. Fuzzy Information Granulation and Improved RVM for Rolling Bearing Life Prediction [J]. Journal of System Simulation, 2021, 33(11): 2561-2571. |
[11] | Wang Suqin, Zhang Feng, Gao Yudou, Shi Min. Learning Expression Recognition Based On Image Sequence [J]. Journal of System Simulation, 2020, 32(7): 1322-1330. |
[12] | Li Wei, Zhou Bingxiang, Jiang Dongnian. Fault Diagnosis Method of Vehicle Power Supply Based on Deep Learning and Sequential Test [J]. Journal of System Simulation, 2020, 32(4): 638-648. |
[13] | Fan Minglu, Wang Yan, Ji Zhicheng. Fault Diagnosis for Bearings of Unbalanced Data Based on Feature Generation [J]. Journal of System Simulation, 2020, 32(12): 2438-2448. |
[14] | Zhang Shengdong, Yang Xiuying. Reaction Force of Ship Bearing Including Multi Factors [J]. Journal of System Simulation, 2019, 31(6): 1158-1164. |
[15] | Jia Jinyuan, Zheng Naihao. Dynamic Interference Detection Algorithm for Bearing with Scar [J]. Journal of System Simulation, 2019, 31(3): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||