Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (11): 2397-2409.doi: 10.16182/j.issn1004731x.joss.22-0628
• Papers • Previous Articles Next Articles
Wang Can1(), Ji Haoran2, Guo Qisheng1, Dong Zhiming1, Tan Yaxin1, Mu Ge3
Received:
2022-06-09
Revised:
2022-08-28
Online:
2023-11-25
Published:
2023-11-23
CLC Number:
Wang Can, Ji Haoran, Guo Qisheng, Dong Zhiming, Tan Yaxin, Mu Ge. Development of Combat Concept of Intelligent Land Assault System Based on DoDAF[J]. Journal of System Simulation, 2023, 35(11): 2397-2409.
Table 1
Model framework
视角类型 | 视图模型 | 概念要素 | 内容说明 |
---|---|---|---|
全景视角 | AV-1概述和摘要信息 | 概念概述 | 目标、任务、计划、条件等信息 |
军事威胁 | 系统应对的军事威胁 | ||
AV-2综合词典 | 综合词典 | 作战概念中涉及的术语定义 | |
能力视角 | CV-1能力构想 | 能力需求 | 能力需求/缺口列项、类型、衡量指标和时间维度 |
CV-2能力分类 | 能力特征 | 系统能力列项 | |
CV-6能力-活动映射 | 能力项与作战活动的追溯关系 | ||
作战视角 | OV-1高级作战概念图 | 作战效果 | 系统预期实现的作战效果 |
制胜机理 | 系统在对抗中形成优势并导致胜利的原理 | ||
OV-2作战资源流描述 | 资源交互 | 系统作战的资源流交互情况 | |
OV-3作战资源流矩阵 | 资源需求线中的资源内容及相关属性 | ||
OV-4组织关系图 | 系统组成 | 系统组件的种类、数量和比例关系以及编配信息 | |
OV-5a作战活动分解树 | 作战流程 | 系统主要作战活动分解 | |
OV-5b作战活动模型 | 系统主要作战活动的时序关系 | ||
OV-6a作战规则模型 | 系统作战中的业务规则 | ||
OV-6b状态转移模型 | 作战节点 | 系统作战相关节点的状态变化 | |
OV-6c事件跟踪描述 | 系统作战相关节点的事件响应时序 | ||
数据与信息视角 | DIV-1概念数据模型 | 信息结构 | 系统作战中的信息结构及其管理规则 |
标准视角 | StdV-1标准概览 | 引用资源 | 引用的条令、指南、标准等数据资源及获取方式 |
StdV-2标准预测 | 关键技术 | 系统开发所需的关键技术 |
1 | 胡晓峰. 战争工程论-走向信息时代的战争方法学(修订版)[M]. 北京: 科学出版社, 2017. |
2 | 龚旻, 卜昭鹏, 陈梅, 等. 陆战分队空地一体无人作战系统装备体系构想研究[J]. 无人系统技术, 2021, 4(1): 71-78. |
Gong Min, Bu Zhaopeng, Chen Mei, et al. Construction Strategy Study on Air-ground Unmanned Operation System for Land Combat Units[J]. Unmanned Systems Technology, 2021, 4(1): 71-78. | |
3 | 姚红霞. 美陆军无人系统发展规划及建设情况研究[J]. 现代军事, 2017(9): 86-91. |
4 | 张宇. 地面无人作战系统作战效能试验评估研究[D]. 北京: 陆军装甲兵学院, 2020. |
Zhang Yu. Research on Operational Effectiveness Test Evaluation of Ground Unmanned Combat System[D]. Beijing: Army Armored Force Academy, 2020. | |
5 | 张宇, 郭齐胜. 基于DoDAF的地面无人作战系统作战概念设计方法[J]. 火力与指挥控制, 2021, 46(5): 52-57, 63. |
Zhang Yu, Guo Qisheng. Operational Concept Design Method Based on DoDAF for Ground Unmanned Combat System[J]. Fire Control & Command Control, 2021, 46(5): 52-57, 63. | |
6 | 周菁, 杨鸣坤, 王磊, 等. 基于DoDAF的有/无人协同特战系统总体结构设计[J]. 兵工自动化, 2021, 40(1): 3-7. |
Zhou Jing, Yang Mingkun, Wang Lei, et al. Overall Architecture Design of Manned/Unmanned Cooperation Special Combat System Based on DoDAF[J]. Ordnance Industry Automation, 2021, 40(1): 3-7. | |
7 | 孙鹏, 孙金标, 陈治湘, 等. 基于DoDAF的空中智能化作战概念体系设计[J]. 指挥控制与仿真, 2021, 43(5): 22-28. |
Sun Peng, Sun Jinbiao, Chen Zhixiang, et al. Design of Conceptual System for Air Intelligent Operations Based on DoDAF[J]. Command Control & Simulation, 2021, 43(5): 22-28. | |
8 | 杜国红, 陆树林, 郑启. 基于MBSE的作战概念建模框架研究[J]. 指挥控制与仿真, 2020, 42(3): 14-20. |
Du Guohong, Lu Shulin, Zheng Qi. Research on Operation Concept Modeling Framework Based on MBSE[J]. Command Control & Simulation, 2020, 42(3): 14-20. | |
9 | Fahey K M, Miller M J. U.S. Department of Defense. Unmanned Systems Integrated Roadmap FY2017-2042[R]. [S.l.]: U.S. Department of Defense, 2017. |
10 | 赵先刚. 无人作战研究[M]. 北京: 国防大学出版社, 2021. |
11 | 郭齐胜, 樊延平, 穆歌, 等. 陆军武器装备需求论证理论与方法[M]. 北京: 电子工业出版社, 2017. |
12 | 麻广林, 谢希权, 高明洁. 新型装备作战概念设计框架[J]. 军事运筹与系统工程, 2012, 26(1): 5-13. |
13 | 王鹏. 陆军无人作战体系构成、运行模式及发展思路[J]. 军事学术, 2021(5): 12-15. |
Wang Peng. Structure, Operation Mode and Development Idea of Army Unmanned Combat System[J]. Military Art Journal, 2021(5): 12-15. | |
14 | 王新尧, 曹云峰, 孙厚俊, 等. 基于DoDAF的有人/无人机协同作战体系结构建模[J]. 系统工程与电子技术, 2020, 42(10): 2265-2274. |
Wang Xinyao, Cao Yunfeng, Sun Houjun, et al. Modeling for Cooperative Combat System Architecture of Manned/Unmanned Aerial Vehicle Based on DoDAF[J]. Systems Engineering and Electronics, 2020, 42(10): 2265-2274. | |
15 | 陈岩, 李志淮, 谭贤四, 等. 基于xUML的DoDAF可执行体系结构开发与验证[J]. 系统仿真学报, 2014, 26(1): 152-158. |
Chen Yan, Li Zhihuai, Tan Xiansi, et al. Design and Validation for DoDAF Executable Architecture Based on xUML[J]. Journal of System Simulation, 2014, 26(1): 152-158. | |
16 | 胡建鹏, 黄林鹏. 基于P-DEVS的可执行体系结构建模与仿真方法[J]. 系统仿真学报, 2016, 28(2): 283-291. |
Hu Jianpeng, Huang Linpeng. Modeling and Simulation of Executable Architecture Based on P-DEVS[J]. Journal of System Simulation, 2016, 28(2): 283-291. |
[1] | Han Lu, Lin Zhang, Kunyu Wang, Zejun Huang, Hongbo Cheng, Jin Cui. A Framework on Equipment Digital Twin Credibility Assessment [J]. Journal of System Simulation, 2023, 35(7): 1455-1471. |
[2] | Yin Xu, Yun Pu, Haixu Liu, Yifan Tan. An Intelligent Driver Model Simulation Considering Both Backward Looking Effect and Velocity Difference [J]. Journal of System Simulation, 2023, 35(7): 1562-1571. |
[3] | Fei Ding, Yuchen Sha, Ying Hong, Xiao Kuai, Dengyin Zhang. Joint Optimization Strategy of Computing Offloading and Edge Caching for Intelligent Connected Vehicles [J]. Journal of System Simulation, 2023, 35(6): 1203-1214. |
[4] | Lili An, Tian Xia, Wenbin Yang, Xinbo Wu. Modeling and Simulation of Spaceborne, Near-Spaceborne, and Airborne Integrated Collaborative Remote Sensing System Based on DoDAF [J]. Journal of System Simulation, 2023, 35(5): 936-948. |
[5] | Yuwen Wu, Zhiyue Niu, Zhenping Li. Picking Path Planning of Container Robots Based on Improved Genetic Algorithm [J]. Journal of System Simulation, 2023, 35(5): 1086-1097. |
[6] | Mingyuan Liu, Jiaxiang Xie, Hao Wu, Jianlin Fu, Guofu Ding. Research on Workshop Logic Modeling and Simulation Based on Finite State Machine [J]. Journal of System Simulation, 2023, 35(4): 853-861. |
[7] | Yongkui Liu, Lin Zhang, Yingfu Liu, Jianyong Feng, Bo Yu, Wenbo Niu. Design and Implementation of Industrial Robot Remote Monitoring System in Cloud Manufacturing [J]. Journal of System Simulation, 2023, 35(2): 318-329. |
[8] | Wu Peng, Yang Zongmo, Jing Qianfeng, Li Yulin. A Hybrid Empirical Method for Fast Modeling of Ship Manoeuvring Motion [J]. Journal of System Simulation, 2023, 35(10): 2150-2160. |
[9] | Guowei Lu, Xueqiang Tao, Deguang Duan, Hao Li, Zerui Zhang, En Chen. Research on Modeling and Simulation of Application Efficiency of Tactical Medical Equipment [J]. Journal of System Simulation, 2023, 35(1): 190-201. |
[10] | Jianxu Zhang, Shuai Hu, Hongyi Jin. Modeling of Traffic Flow Velocity Control Strategy for Human-machine Mixed Driving at Signalized Intersections [J]. Journal of System Simulation, 2022, 34(8): 1697-1709. |
[11] | Yangsheng Jiang, Sichen Wang, Kuan Gao, Meng Liu, Zhihong Yao. Cellular Automata Model of Mixed Traffic Flow Composed of Intelligent Connected Vehicles’ Platoon [J]. Journal of System Simulation, 2022, 34(5): 1025-1032. |
[12] | Guoqiang Shi, Zewei Liu, Tingyu Lin, Zhao Xu, Xingyi Yang, Liqin Guo, Zhengxuan Jia. Open Cloud Architecture Design for Complex Product Modeling and Simulation System [J]. Journal of System Simulation, 2022, 34(3): 442-451. |
[13] | Xiaoan Sun, Xiaoli Luan, Fei Liu. Electronic Solid Waste Prediction Based on Intelligent Optimization Grey Model [J]. Journal of System Simulation, 2022, 34(3): 536-542. |
[14] | Feng Li, Ying Wei. Product Decisions in Presence of Social Learning and Reference Point Effect [J]. Journal of System Simulation, 2022, 34(2): 234-246. |
[15] | Qing Jiang, Rujing Wang. Simulation and Experiment of an Intelligent Control Model for the Cleaning of a Rice-wheat Combine Harvester [J]. Journal of System Simulation, 2022, 34(11): 2485-2496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||