[1] |
阳建宏,黎敏,丁福焰.滚动轴承诊断现场实用技术[M].北京:机械工业出版社,2015.Yang Jianhong,Li Min,Ding Fuyan.Field Practical Technology of Rolling Bearing Diagnosis[M].Beijing:China Machine Press,2015.
|
[2] |
Razavi-Far R,Farajzadeh-Zanjani M,Saif M.An Integrated Class-imbalanced Learning Scheme for Diagnosing Bearing Defects in Induction Motors[J].IEEE Transactions on Industrial Informatics,2017,13(6):2758-2769.
|
[3] |
文成林,吕菲亚,包哲静,等.基于数据驱动的微小故障诊断方法综述[J].自动化学报,2016,42(9):1285-1299.Wen Chenglin,LüFeiya,Bao Zhejing,et al.A Review of Data Driven-based Incipient Fault Diagnosis[J].Acta Automatica Sinica,2016,42(9):1285-1299.
|
[4] |
徐继亚,王艳,纪志成.基于鲸鱼算法优化WKELM的滚动轴承故障诊断[J].系统仿真学报,2017,29(9):2189-2197.Xu Jiya,Wang Yan,Ji Zhicheng.Fault Diagnosis Method of Rolling Bearing Based on WKELM Optimized by Whale Optimization Algorithm[J].Journal of System Simulation,2017,29(9):2189-2197.
|
[5] |
王田田,王艳,纪志成.基于改进极限学习机的滚动轴承故障诊断[J].系统仿真学报,2018,30(11):4413-4420.Wang Tiantian,Wang Yan,Ji Zhicheng.Fault Diagnosis of Rolling Bearing Based on Improved Extreme Learning Machine[J].Journal of Vibration and Shock,2018,30(11):4413-4420.
|
[6] |
任浩,屈剑锋,柴毅.深度学习在故障诊断领域中的研究现状与挑战[J].控制与决策,2017,32(8):1345-1358.Ren Hao,Qu Jinfeng,Chai Yi.Deep Learning for Fault Diagnosis:The State of the Art and Challenge[J].Control and Decision,2017,32(8):1345-1358.
|
[7] |
Wen L,Li X,Gao L,et al.A New Convolutional Neural Network Based Data Driven Fault Diagnosis Method[J].IEEE Transactions on Industrial Electronics (S 1557-9948),2018,65(7):5990-5998.
|
[8] |
Sun J,Yan C,Wen J.Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning[J].IEEE Transactions on Instrumentation and Measurement (S1557-9662),2018,67(1):185-195.
|
[9] |
Guo L,Lei Y,Xing S,et al.Deep Convolutional Transfer Learning Network:A New Method for Intelligent Fault Diagnosis of Machines with Unlabeled Data[J].IEEE Transactions on Industrial Electronics (S 1557-9948),2019,66(9):7316-7325.
|
[10] |
王硕,王培良.基于一维卷积自编码器—高斯混合模型的间歇过程故障检测[J].信息与控制,2019,48(3):285-292.Wang Shuo,Wang Peiliang.Fault Detection Method for a Batch Process Based on a One dimensional Convolution Autoencoder and Gaussian Mixture Model[J].Information and Control,2019,48(3):285-292.
|
[11] |
曲星宇,曾鹏,徐承成,等.基于DropOut降噪自编码的磨矿系统故障诊断[J].控制与决策,2018,33(9):1662-1666.Qu Xingyu,Zeng Peng,Xu Chengcheng,et al.DropOut Denoising Autoencoder-based Fault Diagnosis for Grinding System[J].Control and Decision,2018,33(9):1662-1666.
|
[12] |
Oh H,Jung J H,Jeon B C,et al.Scalable and Unsupervised Feature Engineering using Vibration- imaging and Deep Learning for Rotor System Diagnosis[J].IEEE Transactions on Industrial Electronics (S1557-9948),2018,65(4):3539-3549.
|
[13] |
Jiao W,Lin S.Overall-improved Fault Diagnosis Approach Based on Support Vector Machine[J].Chinese Journal of Scientific Instrument (S0254-3087),2015,36(8):1861-1870.
|
[14] |
Zhang Y Y,Li X Y,Gao L,et al.Imbalanced Data Fault Diagnosis of Rotating Machinery using Synthetic Oversampling and Feature Learning[J].Journal of Manufacturing Systems (S0278-6125),2018,48(4):34-50.
|
[15] |
Hang Q,Yang J,Xing L.Diagnosis of Rolling Bearing Based on Classification for High Dimensional Unbalanced Data[J].IEEE Access (S2169-3536),2019,7(9):79159-79172.
|
[16] |
Hassani H,Zarei J,Arefi M M,et al.Zslices-based General Type-2 Fuzzy Fusion of Support Vector Machines with Application to Bearing Fault Detection[J].IEEE Transactions on Industrial Electronics (S1557-9948),2017,64(9):7210-7217.
|
[17] |
LeCun Y,Bengio Y,Hinton G.Deep learning[J].Nature (S1476-4687),2015,521(7553):436-444.
|
[18] |
Chawla N V,Bowyer K W,Hall L O,et al.SMOTE:Synthetic Minority Over-sampling Technique[J].Journal of Artificial Intelligence Research (S1076-9757),2002,16(1):321-357.
|