Journal of System Simulation ›› 2020, Vol. 32 ›› Issue (7): 1312-1321.doi: 10.16182/j.issn1004731x.joss.19-VR0462
Previous Articles Next Articles
Yin Jingfang1, Zhu Dengming1, 3, *, Shi Min2, Wang Zhaoqi1, 3
Received:
2019-08-29
Revised:
2019-11-13
Online:
2020-07-25
Published:
2020-07-15
CLC Number:
Yin Jingfang, Zhu Dengming, Shi Min, Wang Zhaoqi. Human Depth Maps Restoration Based on Guided GAN[J]. Journal of System Simulation, 2020, 32(7): 1312-1321.
[1] | Tukey J W.Exploratory Data Analysis (preliminary ed.)[M]. Reading MA: Addison-Wesley, 1971. |
[2] | Bertalmio M, Sapiro G, Caselles V, et al.Image Inpainting[C]. In ACM Transactions on Graphics. USA: ACM Press/Addison-Wesley Publishing Co., 2000, 417-424. |
[3] | Barnes C, Shechtman E, Finkelstein A, et al.Patch-Match: A Randomized Correspondence Algorithm for Structural Image Editing[J]. ACM Transactions on Graphics (S0730-0301), 2009, 28(3): 24-35. |
[4] | Darabi S, Shechtman E, Barnes C, et al.Image Melding: Combining Inconsistent Images using Patch-based Synthesis[J]. ACM Transactions on Graphics (S0730-0301), 2012, 31(4): 82-92. |
[5] | Köhler R, Schuler C, Schölkopf B, et al.Mask-specific inpainting with deep neural networks[C]. In German Conference on Pattern Recognition. German: Springer, Cham, 2014: 523-534. |
[6] | Ren J S J, Xu L, Yan Q, et al. Shepard Convolutional Neural Networks[C]. In Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2015: 901-909. |
[7] | Xie J Y, Xu L L, Chen E H.Image Denoising and Inpainting with Deep Neural Networks[C]. In Conference on Neural Information Processing Systems. New York,NY: Curran Associates, Inc., 2012: 341-349. |
[8] | Pathak D, Krähenbühl P, Donahue J, et al.Context Encoders: Feature Learning by Inpainting[C]. In IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2536-2544. |
[9] | Goodfellow I J, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets[C]. In Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2014: 2672-2680. |
[10] | Newell A, Yang K, Deng J.Stacked hourglass networks for human pose estimation[C]. European Conference on Computer Vision. Cham: Springer, 2016: 483-499. |
[11] | Dollár P, Wojek C, Schiele B, et al.Pedestrian Detection: A Benchmark[C]. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009: 304-311. |
[12] | Pishchulin L, Andriluka M, Gehler P, et al.Poselet conditioned pictorial structures[C]. In CVPR. Portland, Oregon: IEEE, 2013: 588-595. |
[13] | Yang Y, Ramanan D.Articulated pose estimation with flexible mixtures-of-parts[C]. In CVPR. Providence, RI: IEEE, 2011. 1385-1392. |
[14] | Chen X, Yuille A L.Articulated pose estimation by a graphical model with image dependent pairwise relations[C]. In NIPS. New York: Curran Associates, Inc., 2014. 1736-1744. |
[15] | Chu X, Ouyang W, Li H, et al.Structured feature learning for pose estimation[C]. In CVPR. Las Vegas, NV: IEEE, 2016. 4715-4723. |
[16] | Zhou X, Huang Q, Sun X, et al.Towards 3d human pose estimation in the wild: a weakly-supervised approach[C]. In IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 398-407. |
[17] | Yang W, Ouyang W, Wang X, et al.3D Human Pose Estimation in the Wild by Adversarial Learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018, 5255-5264. |
[18] | Long J, Shelhamer E, Darrell T.Fully Convolutional Networks for Semantic Segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA: IEEE, 2015: 3431-3440. |
[19] | Zhao J, Li J S, Cheng Y, et al.Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing[C]. In MM '18 Proceedings of the 26th ACM international conference on Multimedia. New York: Association for Computing Machinery, 2018: 792-800. |
[20] | Varol G, Romero J, Martin X, et al.Learning from synthetic humans[C]. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). Venice: IEEE, 2017: 109-117. |
[21] | Jacques J J C S, Jung C R, Musse S R. Skeleton-based human segmentation in still images[C]. 19th IEEE International Conference on Image Processing, Orlando, FL: IEEE, 2012: 141-144. |
[22] | Rother C, Kolmogorov V, Blake A."GrabCut": interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics (S0730-0301), 2004, 23(3): 309-314. |
[23] | Ionescu C, Papava D, Olaru V, et al.Human3.6M: Large scale datasets and predictive methods for 3d human sensing in natural environments[J]. IEEE transactions on pattern analysis and machine intelligence (S0162-8828). 2014, 36(7): 1325-1339. |
[24] | Loper M, Mahmood N, Romero J, et al.SMPL: A Skinned Multi-Person Linear Model[J]. ACM Transactions on Graphics (S0730-0301), 2015, 34(6): 248. |
[25] | Ma X, Geng Z, Bie Z.Depth estimation from single image using cnn-residual network[Z]. |
[26] | Chen W, Fu Z, Yang D, et al.Single-image depth perception in the wild[C]. Advances in Neural Information Processing Systems. New York: Curran Associates, Inc., 2016: 730-738. |
[27] | Liu B, Gould S, Koller D.Single image depth estimation from predicted semantic labels[C]. Computer Vision and Pattern Recognition(CVPR), San Francisco : IEEE, 2010: 1253-1260. |
[28] | Liu W, Chen X, Yang J, et al.Robust Color Guided Depth Map Restoration[J]. IEEE Transactions on Image Processing (S1057-7149), 2017, 26(1): 315-327. |
[29] | Hays J, Efros A A.Scene Completion Using Millions of Photographs[J]. ACM Transactions on Graphics (S0730-0301), 2007, 26(3): 4-12. |
[30] | Satoshi Iizuka, EDGAR SIMO-SERRA, HIROSHI ISHIKAWA.Globally and Locally Consistent Image Completion[J]. In ACM Transaction on Graphics (S0730-0301), 2017, 36(4): 1-14. |
[31] | Chen Y, Tai Y, Liu X M, et al.FSRNet: End-to-End Learning Face Super-Resolution With Facial Priors[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT: IEEE, 2018: 2492-2501. |
[32] | Yu F, Koltun V.Multi-Scale Context Aggregation by Dilated Convolutions[C]. In International Conference on Learning Representations. San Juan, Puerto Rico: Computational and Biological Learning Society, 2016. |
[33] | Pérez P, Gangnet M, Blake A.Poisson Image Editing[J]. ACM Transactions on Graphics (S0730-0301), 2003, 22(3): 313-318. |
[1] | Xu Kang, Xiaofeng Zhang. Radar Remote Sensing Data Augmentation Method Based on Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(4): 920-927. |
[2] | Lin Shuo, An Lei, Gao Zhijun, Shan Dan, Shang Wenli. Research on Intrusion Detection Based on Stacked Autoencoder and Long-short Memory [J]. Journal of System Simulation, 2021, 33(6): 1288-1296. |
[3] | Cheng Wencong, Shi Xiaokang, Wang Zhigang. Creating Synthetic Satellite Cloud Data Based on GAN Method [J]. Journal of System Simulation, 2021, 33(6): 1297-1306. |
[4] | Dong Shuqin, Zhang Bin. Network Traffic Anomaly Detection Method for Imbalanced Data [J]. Journal of System Simulation, 2021, 33(3): 679-689. |
[5] | Wang Xiaohan, Zhang Lin, Ren Lei, Xie Kunyu, Wang Kunyu, Ye Fei, Chen Zhen. Brief Review on Applying Reinforcement Learning to Job Shop Scheduling Problems [J]. Journal of System Simulation, 2021, 33(12): 2782-2791. |
[6] | Wang Buwei, Wang Min, Fan Qian, Wang Ya'nan, zhang hanwen, Yue Yunliang. Study on Prediction of Crystal Properties Based on Deep Learning [J]. Journal of System Simulation, 2021, 33(12): 2854-2863. |
[7] | Feng Xiao, Zhang Hui, Zhou Rui, Qiao Lu, Wei Dong, Li Dandan, Zhang Yuyao, Zheng Guoqing. Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel [J]. Journal of System Simulation, 2021, 33(12): 2983-2991. |
[8] | Du Jinlian, Li Shufei, Jin Xueyun. Research on the Network of 3D Smoke Flow Super-Resolution Data Generation [J]. Journal of System Simulation, 2021, 33(10): 2381-2389. |
[9] | Liu Ruijun, Wang Xiangshang, Zhang Chen, Zhang Bohua. A Survey on Visual SLAM based on Deep Learning [J]. Journal of System Simulation, 2020, 32(7): 1244-1256. |
[10] | Ji Xiaofeng, Ge Yicheng. Holiday Highway Traffic Flow Prediction Method Based on Deep Learning [J]. Journal of System Simulation, 2020, 32(6): 1164-1171. |
[11] | Kong Rui, Xie Wei, Lei Tai. Research on Image Description Method Based on Neural Network [J]. Journal of System Simulation, 2020, 32(4): 601-611. |
[12] | Qin Shengwei, Li Zhong, Li Jinfeng, Chen Zihao, Ding Jingqian, Liu Wanshun. Design and Implementation of Interactive AR System for Campus Roaming [J]. Journal of System Simulation, 2019, 31(7): 1367-1376. |
[13] | Ye Jihua, Shi Shuxia, Li Hanxi, Wang Shimin, Yang Siyu. Research and Implementation of Driving Concern Area Detection Based on Deep Learning [J]. Journal of System Simulation, 2019, 31(7): 1421-1428. |
[14] | Ye Jihua, Shi Shuxia, Li Hanxi, Zuo Jiali, Wang Shimin. A Horizon Detection Method Based on Deep Learning and Random Forest [J]. Journal of System Simulation, 2018, 30(7): 2507-2514. |
[15] | Shi Xiangbin, Zhong Jian, Liu Cuiwei, Liu Fang, Zhang Deyuan. Deep Learning Method for Hyperspectral Remote Sensing Images with Small Samples [J]. Journal of System Simulation, 2018, 30(7): 2744-2752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||