Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (6): 1322-1333.doi: 10.16182/j.issn1004731x.joss.23-0322
• Papers • Previous Articles Next Articles
Lu Yang1(), Liu Pengfei1, Xu Siyuan1, Liu Qiwang1, Gu Fuqian1, Wang Peng2,3,4
Received:
2023-03-21
Revised:
2023-05-29
Online:
2024-06-28
Published:
2024-06-19
CLC Number:
Lu Yang, Liu Pengfei, Xu Siyuan, Liu Qiwang, Gu Fuqian, Wang Peng. Simulation of Rice Disease Recognition Based on Improved Attention Mechanism Embedded in PR-Net Model[J]. Journal of System Simulation, 2024, 36(6): 1322-1333.
Table 1
Relevant parameters of PR-Net structure
层名 | 内核 | 步长 | 输出形状 |
---|---|---|---|
Input | (None, 256, 256, 3) | ||
Conv2D_1 | 2 | (None, 128, 128, 128) | |
MaxPooling2D_1 | 2 | (None, 64, 64, 128) | |
Conv2D_2 | 1 | (None, 64, 64, 64) | |
MaxPooling2D_2 | 2 | (None, 32, 32, 64) | |
PR-Block A | (None, 32, 32, 192) | ||
PR-Block B | (None, 32, 32, 384) | ||
PR-Block C | (None, 32, 32, 1280) | ||
GlobalAveragePooling2D | (None, 1280) | ||
Softmax | (None, 6) |
Table 3
Comparison of different model training
模型 | 训练准确率/% | 训练损失率 | 测试准确率/% | 测试损失率 |
---|---|---|---|---|
VGG16 | 99.61 | 0.007 5 | 98.48 | 0.028 3 |
ResNet50 | 99.82 | 0.054 0 | 98.27 | 0.041 0 |
InceptionV3 | 99.24 | 0.009 6 | 98.13 | 0.022 2 |
InceptionResNetV2 | 99.87 | 0.002 4 | 98.51 | 0.020 1 |
PR-Net | 99.55 | 0.006 0 | 99.10 | 0.013 8 |
CA + PR-Net | 99.62 | 0.004 9 | 97.03 | 0.035 2 |
Improved CA + PR-Net | 99.56 | 0.004 7 | 99.27 | 0.007 6 |
PRC-Net | 99.56 | 0.005 4 | 99.65 | 0.007 3 |
CA+MobileNetV2 | 99.36 | 0.009 7 | 91.39 | 0.080 5 |
Table 4
Comparison of evaluation of different models
模型 | 指标 | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|
VGG16 | 精确率 | 0.97 | 0.97 | 0.97 | 0.99 | 0.99 | 0.99 |
召回率 | 0.98 | 0.98 | 0.96 | 0.99 | 0.99 | 0.99 | |
ResNet50 | 精确率 | 0.98 | 0.98 | 0.99 | 0.97 | 0.99 | 0.97 |
召回率 | 0.97 | 0.97 | 0.96 | 0.99 | 0.99 | 1.00 | |
InceptionV3 | 精确率 | 0.97 | 0.95 | 1.00 | 1.00 | 0.99 | 1.00 |
召回率 | 0.98 | 0.98 | 0.90 | 0.99 | 1.00 | 1.00 | |
Inception-ResNetV2 | 精确率 | 0.98 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 |
召回率 | 0.99 | 0.97 | 1.00 | 0.98 | 0.99 | 1.00 | |
PRC-Net | 精确率 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
召回率 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Table 6
Performance comparison of different models
模型 | 模型尺寸/MB | 平均迭代时间/min | 总训练时间/min | 推理时间/s |
---|---|---|---|---|
VGG16 | 172 | 1.42 | 42.72 | 0.012 |
ResNet50 | 285 | 1.36 | 40.72 | 0.013 |
InceptionV3 | 259 | 1.34 | 40.13 | 0.011 |
Inception-ResNetV2 | 630 | 2.93 | 87.90 | 0.024 |
PR-Net | 43.8 | 1.02 | 30.72 | 0.008 |
CA + PR-Net | 44.5 | 1.59 | 47.25 | 0.013 |
Improved CA+PR-Net | 86.3 | 1.64 | 49.22 | 0.014 |
PRC-Net | 86.3 | 1.29 | 38.72 | 0.010 |
1 | Rusinque Leidy, Maleita Carla, Abrantes Isabel, et al. Meloidogyne Graminicola-A Threat to Rice Production: Review Update on Distribution, Biology, Identification, and Management[J]. Biology, 2021, 10(11): 1163. |
2 | Qiu Jing, Lu Xiaolei, Wang Xingxing, et al. Research on Rice Disease Identification Model Based on Migration Learning in VGG Network[J]. IOP Conference Series: Earth and Environmental Science, 2021, 680(1): 012087. |
3 | Bashir K, Rehman M, Bari M. Detection and Classification of Rice Diseases: An Automated Approach Using Textural Features[J]. Mehran University Research Journal of Engineering and Technology, 2019, 38(1): 239-250. |
4 | Saha S, Ahsan S M M. Rice Disease Detection Using Intensity Moments and Random Forest[C]//2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). Piscataway, NJ, USA: IEEE, 2021: 166-170. |
5 | Sharma Vikas, Aftab Ahmad Mir, Sarwr Abid. Detection of Rice Disease Using Bayes' Classifier and Minimum Distance Classifier[J]. Journal of Multimedia Information System, 2020, 7(1): 17-24. |
6 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-10-28]. . |
7 | He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778. |
8 | Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2818-2826. |
9 | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[C]//Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2017: 4278-4284. |
10 | Niu Zhaoyang, Zhong Guoqiang, Yu Hui. A Review on the Attention Mechanism of Deep Learning[J]. Neurocomputing, 2021, 452: 48-62. |
11 | Hughes D P, Salathé Marcel. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics[EB/OL]. (2016-04-12) [2023-01-03]. . |
12 | Prabira Kumar Sethy, Negi Baishalee, Nalini Kanta Barpanda, et al. Measurement of Disease Severity of Rice Crop Using Machine Learning and Computational Intelligence[M]//Sasikumar Gurumoorthy, Bangole Narendra Kumar Rao, Gao Xiaozhi. Cognitive Science and Artificial Intelligence: Advances and Applications. Singapore: Springer Singapore, 2018: 1-11. |
13 | Shrivastava Vimal K, Pradhan Monoj K. Rice Plant Disease Classification Using Color Features: A Machine Learning Paradigm[J]. Journal of Plant Pathology, 2021, 103(1): 17-26. |
14 | Mohapatra Subasish, Marandi Chandan, Sahoo Amlan, et al. Rice Leaf Disease Detection and Classification Using a Deep Neural Network[C]//Computing, Communication and Learning. Cham: Springer Nature Switzerland, 2022: 231-243. |
15 | Chen Zhaoyi, Wu Ruhui, Lin Yiyan, et al. Plant Disease Recognition Model Based on Improved YOLOv5[J]. Agronomy, 2022, 12(2): 365. |
16 | Chen Junde, Zhang Defu, Zeb Adnan, et al. Identification of Rice Plant Diseases Using Lightweight Attention Networks[J]. Expert Systems with Applications, 2021, 169: 114514. |
17 | Jaderberg M, Simonyan K, Zisserman A, et al. Spatial Transformer Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2015: 2017-2025. |
18 | Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 13708-13717. |
19 | Gulrajani I, Ahmed F, Arjovsky M, et al. Improved Training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 5769-5779. |
20 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
21 | Woo Sanghyun, Park Jongchan, Young Lee Joon, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
22 | Nandhini S, Ashokkumar K. An Automatic Plant Leaf Disease Identification Using DenseNet-121 Architecture with a Mutation-based Henry Gas Solubility Optimization Algorithm[J]. Neural Computing and Applications, 2022, 34(7): 5513-5534. |
23 | Poornima Singh Thakur, Sheorey Tanuja, Ojha Aparajita. VGG-ICNN: A Lightweight CNN Model for Crop Disease Identification[J]. Multimedia Tools and Applications, 2023, 82(1): 497-520. |
[1] | Liu Jinhui, Chen Mengyuan, Han Pengpeng, Chen Hebao, Zhang Yukun. A Graph Neural Network Visual SLAM Algorithm for Large-angle View Motion [J]. Journal of System Simulation, 2024, 36(5): 1043-1060. |
[2] | Dong Qingqing, Wu Hao, Qian Wenhua, Kong Fengling. RGB-D Saliency Object Detection Based on Cross-refinement and Circular Attention [J]. Journal of System Simulation, 2023, 35(9): 1931-1947. |
[3] | Hao Yu, Jinxia Jiang, Xiaohan Lai, Feng Mei, Qing Wang. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network [J]. Journal of System Simulation, 2023, 35(7): 1572-1580. |
[4] | Yun Wei, Qi Luo, Yingzhi Zhao. Semantic Segmentation Model Based on Adaptive Fusion and Attention Refinement [J]. Journal of System Simulation, 2023, 35(6): 1226-1234. |
[5] | Ding Shi, Xuefeng Yan, Lina Gong, Jingxuan Zhang, Donghai Guan, Mingqiang Wei. Multi-agent Cooperative Combat Simulation in Naval Battlefield with Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(4): 786-796. |
[6] | Nan Xiang, Lu Wang, Chongliu Jia, Yuemou Jian, Xiaoxia Ma. Simulation of Occluded Pedestrian Detection Based on Improved YOLO [J]. Journal of System Simulation, 2023, 35(2): 286-299. |
[7] | Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network [J]. Journal of System Simulation, 2023, 35(2): 308-317. |
[8] | Zhao Weiping, Chen Yu, Xiang Song, Liu Yuanqiang, Wang Chaoyue. Image Semantic Segmentation Algorithm Based on Improved DeepLabv3+ [J]. Journal of System Simulation, 2023, 35(11): 2333-2344. |
[9] | Weidong Jin, Shuli Zhang, Peng Tang, Man Zhang. Image Dehazing Network Based on Densely Connected Residual Block and Channel Pixel Attention [J]. Journal of System Simulation, 2022, 34(8): 1663-1673. |
[10] | Junjie Qiu, Hong Zheng, Yunhui Cheng. Research on Prediction of Model Based on Multi-scale LSTM [J]. Journal of System Simulation, 2022, 34(7): 1593-1604. |
[11] | Yin Wang, Feixiang Wang, Qianlai Sun. Vehicle Detection Method Based on Multi Scale Feature Fusion [J]. Journal of System Simulation, 2022, 34(6): 1219-1229. |
[12] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[13] | Yang Weilong, Xu Kai, Xie Xu, Sun Lin. Research on CGF-oriented Virtual Human Perceptual Attention Model [J]. Journal of System Simulation, 2021, 33(2): 262-270. |
[14] | Ma Rong, Chen Qiurui, Zhang Han, Mei Zheng, Wang Rui, Wei Wei. Low Power Visual Odometry Technology Based on Monocular Depth Estimation [J]. Journal of System Simulation, 2021, 33(12): 3001-3011. |
[15] | Sun Guodong, He Qichang. Research on Intelligent Design and Simulation Method of Screw Machine Process [J]. Journal of System Simulation, 2021, 33(1): 62-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||